پرتوهای ایکس را بوسیله بمباران هدفی فلزی با باریکهای از الکترونهای سریع تولید میکنند. قطعات اصلی لامپ اشعه ایکس شامل کاتد برای گسیل الکترونها و آندی در نقش هدف میباشند، که هر دو درون لامپ خلا جای گرفتهاند. کاتد پیچهای رشتهای از جنس تنگستن است، این لامپ یک پیچه کانونی جهت جمع کنندگی باریکه الکترونی نیز دارد و در ساختمان آن از پمپ تخلیه نیز استفاده میکنند.
![]() |
![]() |
متغیرهای مهم لامپ اشعه ایکس که مکانیزم عمل و کنترل باریکه حاصل را سبب میشوند، عبارتند از:
کلمات کلیدی: هسته ای
چگونگی شکل گیری پرتوهای کاتدی
![]() |
کلمات کلیدی: مغناطیس
از آنجا که اتمها از نظر الکتریکی خنثی هستند، تعداد الکترونها و پروتونها در هر اتم بایستی برابر باشند. برای توجیه جرم کل اتمها ، ارنست رادرفورد در 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند، تشخیص و تعیین خواص آنها مشکل است.
ولی در 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون (از واژه لاتین به معنای خنثی) نامیده میشوند، منتشر کرد. او توانست با استفاده از داده های بدست آمده از بعضی از واکنشهای هستهای مولد نوترون ، جرم نوترون را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمامی ذراتی که در این واکنشها مصرف و تولید میشوند، جرم نوترون را محاسبه کرد. جرم نوترون 24-10×6749/1 g است که اندکی بیش از جرم پروتون (24-10×6726/1 گرم) میباشد.
معادله واکنش نوترونی
گسیل نوترون برای اولین بار در سال 1932 در ضمن بمباران بریلیم با ذرات آشکار شد. درنتیجه گیراندازی ذره آلفا توسط هسته بریلیم ، هسته کربن تشکیل و نوترون گسیل شد. بعدها شمار زیادی واکنشهای هستهای کشف شد که نوترون آزاد میکردند.
برای بدست آوردن نوترون مثل سابق واکنش ذره آلفا با بریلیم معمول است. حتی اکنون نیز آمپولهای محتوی آمیزه ای از ماده پرتوزای آلفا و گرد بریلیم بعنوان چشمه تراکم نوترون بکار میرود. چنین چشمه نوترونی را در نزدیکی اتاقک ابر ویلسون در حال کار قرار میدهیم که در آن لایه نازکی از ماده محتوی هیدروژن مثلاً پارافین قراردارد.
روی عکسی که از این اتاقک گرفته شود، ردهایی مشاهده میشود که از این لایه خارج میشوند. چنانکه میتوان از روی جنس یونش پی برد که اینها ردهای پروتون هستند. تمام ردها به طرف جلو هستند. آنها با پرتونهایی ایجاد شدهاند که بعلت برخورد نوترونهای تند گسیل شده از چشمه از لایه خارج شده اند. خود نوترونها که از اتاقک میگذرند ردی ندارند.
بنابراین ، نوترونها یونش قابل ملاحظهای تولید نمیکنند، یعنی برخلاف ذرات باردار آنها با الکترونها عملاً اندر کنش ندارند. نوترونها با گذر از میان ماده فقط با هسته های اتمی اندرکنش میکنند. ولی نظر به اینکه اندازه هستهها خیلی کوچک است، برخورد نوترونها با آنها خیلی بندرت صورت میگیرد.
برای اینکه نوترون یک ذره خنثی میباشد، از مکانیزمهای آشکارسازی ذرات باردار نمیتوان برای آشکار سازی نوترون استفاده کرد. اخیرا دانشمندان بکمک آشکارسازهای کوانتومی ، تداخل سنجهای نوترونی ، اسپکترومتر جرمی کوانتومی ، برخوردهای ذرات بنیادی ، بمباران نوترونی مواد و نیز واکنشهای هستهای از جمله واکنش زنجیری شکافت نوترونها را آشکارسازی نموده اند.
کلمات کلیدی: هسته ای
هر چند نوترونها را به سبب اثر شان روی هسته های اتمی واکنش های هسته ای و انتقال انرژی در خلال برخوردها می توان به آسانی آشکار ساخت اما اندرکنش نوترینو با هسته ها خیلی ضعیف است. تا این اواخر واکنش هسته ایی که نوترینو ها راه انداخته باشند در آزمایشگاه آشکار سازی نشده است.
این ذره ناپایدار است پس چگونه می توان به وجود نوترینوها پی برد؟
اگر در ضمن واپاشی ذره بتا تنها الکترون گسیل می شد، انرژی همه الکترونهای بتا برای ایزوتوپ پرتوزای معینی باید یکسان می بود. بدیهی است این انرژی باید برابر باشد با اختلاف انرژی درونی هسته اتمی اولیه و هسته حاصل به اضافه الکترون این اختلاف باید یکی باشد. زیرا از طریق آزمایش ثابت شده است که همه هسته های یک ایزوتوپ معین دارای جرم یکسانند. در نتیجه انرژی درونیشان یکی است.
انرژی الکترون حاصل از واپاشی ذره بتا می تواند مقادیر مختلف ، از صفر تا مقدار ماکزیمم معین W را داشته باشد. مهم است بدانیم که این مقدار ماکزیمم درست برابر با انرژی درونی آزاد شده در ضمن واکنش منظور شده در بالاست. برای سازگاری با قانون بقای انرژی باید فرض کرد که در جریان واپاشی ذره بتا همراه با الکترون یک ذره دیگر نیز (یعنی نوترینو) تشکیل می شود.
این ذره انرژی ای را با خود حمل می کند که مکمل انرژی الکترون تا W است. اگر نوترینو انرژی ای نزدیک به W با خود حمل کند، انرژی الکترون نزدیک به صفر است. اگر انرژی نوترینو کم باشد، برعکس، انرژی الکترون نزدیک به W است. تحلیل تفضیلی از واپاشی به دلایل متقاعد کننده دیگری بر گسیل نوترینو در این فرایند دلالت دارد و امکان داده است که جرم در حال سکون نوترینو را برآورد کنند.
معلوم شده است که جرم این ذره از ده هزارم جرم در حال سکون الکترون کمتر است. سالها تحقیق سرانجام به آنجا رسید که در 1956 از راه آزمایش واکنشی هسته ای را کشف کردند که در آن نوترینویی (ν) توسط پروتون جذب و سپس این پروتون به نوترون و پوزیترون تبدیل شد. P+ν→n+e
در این آزمایشها چشمه نوترینوها راکتور هسته ای نیرومندی بود که در آن نوترینو در ضمن واپاشی ذره بتا از پاره های شکافت اورانیوم تشکیل می شد.
واکنشهای متنوعی در راکتورها صورت گرفته است که توسط نوترینو به وجود آمده است. جالبترین آزمایش ها ، آزمایش هایی هستند که درباره آشکارسازی نوترینو های خورشیدی انجام شده اند. این آزمایش ها امکان داده اند که درستی نظرات ابراز شده درباره ساختار خورشید تحقیق و فرایند های هسته ای درون توده آن بررسی شود.
در واکنش گداخت چهار پروتون ، که گمان می رود چشمه انرژی خورشید باشد. همراه هر هسته هلیوم تشکیل شده دو نوترینو نیز گسیل می شود. نوترینو خیلی کم با ماده اندر کنش می کند. به طوری که اکثریت قریب به اتفاق آنها در خورشید نفوذ می کنند و به درون فضای کیهانی می گریزند.
آن بخش از نوترینو هایی که به زمین می رسند این طور تجلی می کنند که آشکارسازهای خاصی موجب واکنش های هسته ای می شوند. چون اندر کنش های درگیر با نوترینو ها خیلی ضعیف است، این بخش خیلی کوچک است و آزمایش های آشکارسازی نوترینو های خورشیدی پرهزینه و پیچیده اند. با وجود این ، این آزمایش ها انجام ، هر نوترینو های گسیل شده از توده خورشید ثبت شده اند.
کلمات کلیدی: هسته ای
همان طور که میدانید، خورشید «جعبه سیاهی» است که اختر شناسان فقط میتوانند «خروجی» آن را بررسی نمایند. تمام اطلاعات مربوط به خورشید که برای اخترشناسی جدید قابل حصول بوده بر مبنای مطالعه تابشهای مختلفی قرار دارد. که از بیرونی ترین لایههای خورشید منتشر میگردد. هیچ گونه معلوماتی مستقیما از اعماق خورشید به دست نمیآید. اگر بخواهیم اظهار نظر دقیقی به عمل آوریم. باید بگوییم که نظریه ترکیب داخلی خورشید که دوام میزان انرژی آن را در اثر واکنشهای گرما هستهای میداند فقط یک مدل نظری است. آری ، کلمه فقط در این مورد کاملا مناسب نیست.
نوترینو ذرهای است با سرعت زیاد که مستقیما مربوط به واکنشهای گرما-هستهای میگردد. نوترینوها در اثر تبدیل هسته هیدروژن به هلیوم تشکیل میشوند و بر مبنای عقاید جدید ، منبعی از انرژی میان ستارهای هستند. شار این ذرات و انرژی آنها به درجه حرارت و ماهیت واکنشهای گرما - هستهای بستگی دارند. در حالی که فوتونهای تشکیل شده در داخل منظومه شمسی ، پیش از وارد شدن به فضا حدودا ده بیلیون بار برخورد پیدا میکنند. قدرت نفوذ نوترینو به قدری زیاد است که از تمام توده ماده خورشیدی بدون برخورد به مانعی عبور میکند و به زمین میرسد. اگر امکان داشت آنها را به دام بیاندازیم میتوانستیم مشاهده نماییم که در داخل خورشید چه میگذرد. در صورتی که نوترینوها فقط بطور مستقیم در خلال برهمکنش با ذرات دیگر (در واکنشهای گرما - هستهای) که نتایج آن قابل ثبت میباشد، بررسی میشوند. چنین اظهار نظری بسیار مشکل میگردد.
نظریه گرما هستهای به وضوح فرآیندهای تکامل ستارهای را توضیح میدهد. و با مشخصات فیزیکی قابل رصد خورشید و ستارگان کاملا مطابقت مینماید. با این وجود این نظریه درست مانند هر مدل نظری دیگر که مربوط به وضعیت داخلی جعبه سیاه است چون بر شواهد غیر مستقیمی تکیه دارد، نمیتواند رضایت بخش باشد. تایید مستقیم اطلاعات ضروری است و چنین تاییدی باید از اطلاعاتی که مستقیما از داخل ستارگان به دست میآید، فراهم گردد. یکی از راههای بدست آوردن چنین اطلاعاتی مشخص شده است. و آن عبارت است از اختر شناسی نوترینویی و یا به طور دقیق نیز یک نجومی نوترینویی.
یکی از این گونه واکنشها به وسیله فیزیکدان مشهور آگادمیسین برنو .ام.پونتکرنو (Bruno M.Pontecorvo) پیشنهاد گردید. او خاطر نشان کرد که ایزوتوپ کلر (37Cl) میتواند یک نوترینو جذب کند و با از دست دادن یک الکترون به یکی از ایزوتوپهای آرگن (37Ar) تبدیل شود. که ردیابی الکترون بوجود آمده دشوار نیست. از این گذشته چون 37Ar رادیواکتیو است، مقدار آن بوسیه محصولات حاصل از تجزیهاش قابل اندازه گیری میباشد.
اشکال ثبت نوترینوها به وسیله آشکارساز کلر این است که باید شار نوترینو از دیگر پرتوهای کیهانی که میتوانند واکنش هستهای تبدیل کلر به آرگن را آغاز کنند، مجزا شود. این واقعیت انجام گیری در عمق کره زمین را که نفوذ ذرات کیهانی به داخل آن ممکن نیست، ضروری می سازد. فکر ساختن آشکارساز کلر به وسیله فیزیکدان آمریکایی ریموند دیویس (Ragmond Davis) و همکارش اجرا گردید. دام نوترینو از مخزن عظیمی حاوی 600 تن تتراکلرو اتیلن مایع پاک کننده معمولی تشکیل شده بود و در گودال سنگی معدن هومزتیک نزدیک شهر لید در داکوتای جنوبی کار گذاشته شد.
تابش الکترومغناطیسی که از خورشید به ما میرسد. واقعا حدود یک میلیون سال پیش از خورشید گسیل شده و باید فاصله داخل خورشید تا سطح آن و بعد تا سطح زمین را پیموده باشد. ولی نوترینوها عملا شرایط خورشید را در لحظه بررسی گزارش میدهند. بنابراین تعجبی ندارد که چرا نتایج مطالعه به وسیله تابش الکترومغناطیسی با نتایج مطالعه به وسیله نوترینو تفاوت دارد.
آیا عدم وجود نوترینوهای خورشید در آزمایش ویدیس به دلیل است که در دوره ما کوره گرما هستهای خورشید است از کار کشیده است؟ برای پاسخ دادن به این سئوال آزمایشهای بیشتری ضرورت دارد. و تجهیزات چنین آزمایشی هم اکنون در حال گسترش میباشد. مسئله دیگری که احتمال نتایج تجربیات دیویس را توضیح میدهد. طبیعت خود نوترینوها میباشد.
کلمات کلیدی: هسته ای