سفارش تبلیغ
صبا ویژن
برادرانِ راستین به دست آر و بر شمارشان بیفزای که به هنگام آسایش، ساز و برگ اند و به هنگام سختی، سپر . [امام علی علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ
 صنایع نیمه‌هادی در سیر تکامل خود در حال رسیدن به نقط‌های است که توانایی آن برای تولید نقاط کوچکتر با مشکلاتی جدی همچون اثرات کوانتومی و نوسانات سطوح اتمی روبرو خواهد شد.
مشکلات دیگر در راه پیشرفت CMOS عبارتند از مصرف بالا، اتلاف حرارت و هزینه بسیار بالای ساخت. این مسائل در آینده مانعی سخت برای تولید نیمه‌هادی‌های کارآمد خواهد بود. به گفته NanoMarkets ، نانوتکنولوژی به ادامه پیشرفت و تولید CMOS کمک خواهد کرد و همچنین فناوری‌های جدید را قادر خواهد ساخت تا گوی سبقت را در جلب رضایت بازار از CMOS بربایند.غول‌های بزرگ صنعتی همچون فری‌اسکیل ‌، آی‌بی‌اِم، اینفینئون و اینتل پشتوانة مهمی برای نانوحافظه‌ها به حساب می‌آیند.

یک گزارش جدید از NanoMarkets بیانگر این مطلب است که همان‌طورکه روش‌های کنونی لیتوگرافی به پایان راه خود رسیده‌اند، ابزار‌هایی که برای توسعه، تولید و آزمایش CMOS به کار می‌روند، نیز باید بر پایة نانوتکنولوژی طرح‌ریزی گردند. پرتوافکن مستقیم الکترونیکی که در تولید ASIC به کار می‌رود، نمونه‌های از ابزاری است که به کمک نانوتکنولوژی بوجود آمده‌است. اما نانومارکتز معتقد است که کاربرد واقعی نانوتکنولوژی در تولید محصولات جدید، با توجه به خصوصیات مواد مقیاس نانو می‌باشد. بخش‌هایی از صنعت نیمه‌هادی که بیشترین تأثیر نانوتکنولوژی در آنها دیده می‌شود خارج از مقوله CMOS قرار دارند. به گفته نانومارکتز این موضوع در موارد زیر به وضوح دیده می‌شود:

o حافظه غیرفرار: حافظه غیرفرار یکی از عوامل تقویت محاسبات سیار است. اما با توجه به اینکه حجم و سرعت فناوری Flash محدود می‌باشد، حافظه‌های جدید که در طراحی آنها از نانوتکنولوژی بهره گرفته شده است، کارایی بهتری را از خود نشان داده‌اند. FRAM و MRAM نمونه‌هایی از این نوع حافظه‌ها هستند.

o الکترونیک پلیمری: سونی، زیراکس و سایرین آماده‌اند که محصولات الکترونیک لایه نازک را وارد بازار کنند. الکترونیک پلیمری، برخلاف CMOS، از خصوصیات حرارتی بسیار خوبی برخوردار است و هزینه‌ تولید در حجم کم را پایین می‌آورد. این خصوصیات امکان تولید محصولات جدیدی را به وجود می‌آورد. در سال 2006 نمایشگر‌های بزرگ رولی و همچنین برچسب‌های RFID با قیمت پایین تولید خواهد شد که امکان استفاده از آنها برای اجناس یک‌بار‌مصرف فراهم خواهد شد.

o نانوحسگر: نانوحسگرها نسبت به رقبای خود از آستانه تشخیص بسیار پایین‌تری برخوردارند. آنها قادرند در زمینه کشف امراض بیولوژیک نقش مهمی را ایفا کنند. به گونه‌ای که در مورد اعلام وجود سرطان، از سرعت بسیار زیادی برخوردارند.

گزارش NanoMarkets بیانگر این مطلب است که نانوتکنولوژی به‌زودی می‌تواند در مدیریت حرارتی و اتصالات داخلی پر‌سرعت، به میزان قابل‌توجهی کمک نماید. در زمینه اتصالات داخلی پرسرعت می‌توان از نانولوله‌ها استفاده نمود زیرا توانایی آنها در انتقال جریان از مس خیلی بیشتر است و می‌توان آنها را به روش‌های قابل انطباق با CMOS‌ها رشد داد (اینفینئون در سال 2002 این قابلیت را نشان داد). از نانولوله‌ها می‌توان خنک‌کننده‌های بسیار خوبی برای رفع مشکلات حرارتی ساخت (همانند قطعاتی که اینتل از سال 2002 به بعد به کارشان گرفت) و یا می‌توان با ایجاد جرقه بین آنها جریانی از هوای خنک تولید نمود.
از این گزارش چنین نتیجه گرفته می‌شود که فرصت‌های قابل توجهی در نانوالکترونیک وجود دارد. به‌گونه‌ای که در سال 2006 نانوحافظه‌ها به تنهایی 1/3 میلیارد دلار سودآوری خواهند داشت. همان‌گونه که در بالا توضیح داده‌شد، این امر هم‌اکنون در قالب روش‌های جدید برای تکمیل CMOSها آغاز شده‌است. این گزارش نشان می‌دهد که سازندگان نیمه‌هادی‌ها از هم‌اکنون باید به فکر طرح ریزی برای به‌کارگرفتن نانوتکنولوژی در تولیدات خود باشند. در غیر این‌صورت باید از دست دادن تولیدات بزرگ آینده را بپذیرند، که البته پذیرفتن این ریسک بسیار دور از ذهن به‌نظر می‌رسد.

کلمات کلیدی: نانو تکنولوژی


نوشته شده توسط مهدی 86/11/4:: 10:18 عصر     |     () نظر

وقتی برای گشت و گذار به دل کوه ها و کوهپایه ها پناه می برید و از شیب تند جاده به سمت پایین حرکت می کنید، بوی نامطبوعی که از لنت ترمز خودروی شما خارج می شود، شما را هشیار می کند.
از فرزندتان می خواهید آن را تنفس نکند چون شنیده اید بسیار سمی است. اما فکر کرده اید چرا؟ فناوری های نوین همیشه مثل سکه دو رو دارند، طرفی از آنها که در جهت رفاه و بهره مندی انسان است و وجهی دیگر که به طور مستقیم با سلامت جسمی در تضاد است. چند سالی می شود که نانوتکنولوژی به عنوان یک کلید در حل بسیاری از مشکلات صنایع در قرن اخیر گره گشا بوده است و در بسیاری موارد به بشر خدمت می کند؛ اما نباید از روی دیگر این سکه غافل بود.
ذرات نانو در مواردی می توانند همچون غبار همان آزبست لنت ترمز عمل کنند و مثل یک ذره کاملا غیرطبیعی که بدون هدف در فضا رها شده است ، از جنبه های مختلف ، سلامت انسان را تهدید کنند. البته همچنان که علم نانو یک علم نو و جدید است ، عوارض جانبی آن هم چندان مشخص نیست ، اما دانشمندان تا حدی توانسته اند روابطی بین بعضی بیماری های تنفسی با ذرات نانو را به اثبات برسانند.

فناوری های نانو، در زمینه های گوناگونی همچون توسعه داروها، تصفیه آبها و زدودن انواع آلودگی های آب ، فناوری های ارتباطی و اطلاعاتی ، تولید مواد مستحکم تر و سبک تر دارای مزایای بالقوه هستند. امروزه بسیاری از شرکت های تجاری ، بر مبنای همین فناوری ها، نانوذرات را به شکل پودر، اسپری و پوشش تولید می کنند که کاربردهای زیادی در قسمت های مختلف اتومبیل ، راکت های تنیس ، عینک های آفتابی ضد خش ، پارچه های ضد لک ، پنجره های تمیز کن خودکار و صفحات خورشیدی دارد و تعداد این شرکت ها با سرعتی باور نکردنی رو به افزایش است.

نانو چه اندازه ای است؟

محدوده اندازه ذراتی که این چنین علاقه مندان را در صنعت به سوی خود جلب کرده است ، معمولا کمتر از 100 نانومتر است. برای این که تصوری از مقیاس داشته باشیم ، بد نیست به اندازه موی سر انسان که چیزی حدود 10هزار تا 50 هزار نانومتر است توجه کنیم. یک سلول قرمز خون ، قطری حدود 5 هزار نانومتر دارد و ابعاد یک ویروس بین 10 تا 100 نانومتر است. با کاهش اندازه ذرات ، نسبت تعداد اتم های سطحی به اتم های داخلی بیشتر می شود. بر فرض درصد اتم های سطحی یک ذره با اندازه 30 نانومتر 5 درصد است ، در حالی که این نسبت برای یک ذره با اندازه 3نانومتر 50 است.
این طوری است که نانوذرات در مقایسه با ذرات بزرگتر نسبت سطح به وزن بسیار بیشتری دارند و با کاهش اندازه ذرات به یک دهم نانومتر یا کمتر، اثرات کوانتومی دیده می شوند و این اثرات هم می توانند به مقدار زیادی ویژگی های نوری ، مغناطیسی و الکتریکی مواد را تحت الشعاع قرار دهند. با این ویژگی های جدید است که ساختار مواد در مقیاس نانو به ما امکان طراحی و ساخت مواد جدید با ویژگی های کاملا نویی را می دهد. با کم کردن اندازه و ثابت نگه داشتن نوع ماده ، ویژگی های اساسی از قبیل هدایت الکتریکی ، رنگ ، استحکام و نقطه ذوب ماده تغییر می کند.

نانو و تهدید محیط زیست

در حین فرآیندهای احتراق ، برای تولید انرژی یا در اتومبیل ها، فرآیندهای خوردگی مکانیکی یا فرآیندهای صنعتی معمول ، نانوذراتی به صورت ناخواسته تولید می شوند که تا حد زیادی محیط زیست و زندگی انسان را تحت تاثیر قرار می دهند.
به نظر می رسد با گسترش استفاده از این فناوری ها، اثرات افزایش بیش از حد تولید و استفاده از نانو مواد بر سلامت کارکنان و مصرف کننده ها، سلامت عمومی و محیط زیست ، بیشتر مورد توجه قرار گرفته است.
از آنجا که فرآیند رشد و واکنش های شیمیایی کاتالیستی که در سطح اتفاق می افتند، یک مقدار مشخصی از ماده در مقیاس نانومتری ، بسیار فعال تر از همان مقدار ماده با ابعاد بزرگتر است ، این ویژگی ها ممکن است روی سلامت و محیط زیست اثرات منفی داشته و منجر به افزایش سمیت نانوذرات شوند.

ورود از راه تنفس

خطرات احتمالی نانوذراتی که در هوا پخش شده اند، یعنی آئروسل ها اهمیت بالایی دارند. این مساله به دلیل تحرک بالای آن و امکان جذب از طریق ریه که راحت ترین مسیر ورود به بدن است ، اهمیت پیدا می کند. اندازه ذرات نانو که به نسبت سایر موادی که به ریه وارد می شوند کوچک تر است ، این امکان را فراهم می کند که نشت این ذرات تا میزان بالایی روی دستگاه تنفسی ، راحت تر صورت گیرد.دستگاه تنفسی سه قسمت شامل مسیرهای هوایی بالایی ، ناحیه نایژه ها و ماکروفاژها دارد که امکان آلودگی آنها با مواد نانو را بررسی می کنیم.

وقتی ریه ها ملتهب می شوند

مسیرهای هوایی بالایی و نایژه ها به وسیله لایه موکوس حفاظت می شوند. ذرات بزرگتر از طریق نشستن روی دیواره مسیر هوایی ، از هوای ورودی به ریه ها جدا می شوند. حرکات مژه ای این قسمت ، خلط را به سمت گلو بالا برده و از آنجا یا در اثر سرفه خارج و یا با عمل بلع ، بلعیده می شوند. ذرات کوچکتر (کوچکتر از 2.5 میکرومتر) و نانوذرات ، ممکن است وارد کیسه های هوایی شوند که ناحیه مبادله گاز در ریه هستند و کوچک ترین اجزای ریه محسوب می شوند که در ارتباط با مویرگ ها قرار دارند.
به منظور دفع دی اکسیدکربن از مویرگ ها به کیسه های هوایی و جذب اکسیژن ، تمام غشاها و سلول ها در این قسمت ها نازک و آسیب پذیر هستند و هیچ گونه لایه حفاظتی ندارند. تنها مکانیسم حفاظتی در این قسمت ، ماکروفاژها هستند. این ماکروفاژها سلول های بزرگی هستند که اشیائ خارجی را بلعیده و از طریق جابه جا کردن آنها مثلا به سوی گره های لنفاوی آنها را از کیسه های هوایی خارج می کنند. نانو ذرات تا حد زیادی از این سیستم حفاظتی رها شده و می توانند وارد بافت های تنفسی شوند.
ذرات و الیاف باقی مانده می توانند با بافت های مخاطی ریوی بر هم کنش کرده و بافت های ریوی را دچار التهاب های شدید، زخم و حتی مرگ کنند. این وضعیت ریه ها در چند بیماری دیگر هم دیده می شود، از جمله در بیماری باکتریایی ذات الریه یا بیماری های صنعتی مهلکی همچون سیلیکوسیس یا آزبستوسیس مشاهده می شوند.

چه افرادی بیمار می شوند؟

از قدیم ، این دو بیماری بر اثر تنفس ذراتی مثل نانوذرات ایجاد می شده است که اثرات بسیار مهلکی بر سلامت دستگاه تنفسی دارند. سیلیکوسیس وقتی ایجاد می شود که گرد و غبار حاوی سیلیس برای مدت طولانی به درون ریه تنفس شود. سیلیس بلوری برای سطح بیرونی ریه سمی است. وقتی سیلیس بلوری در تماس با ریه قرار می گیرد، اثرات التهابی شدید به وجود می آیند، در تمام مدت این التهاب باعث می شود که بافت ریه به نحو برگشت ناپذیری آسیب دیده و ضخیم شود که این پدیده با عنوان فیبروسیس معروف است. سیلیس بلوری ، معمولا در ماسه سنگ گرانیت ، سنگ لوح ، زغال سنگ و ماسه سیلیسی خالص وجود دارد. به همین دلیل افرادی مثل کارگرانی که با ماسه کار می کنند و کارگران کارخانه های ذوب فلزات ، سفالگران و... در معرض این خطر قرار دارند. سیلیس بلوری از سوی سازمان بهداشت جهانی به عنوان یک ماده سرطان زا معرفی شده است.
الیاف پنبه نسوز هم ، طولی حدود چند میکرومتر دارند، که هرچند جز نانو مواد نیستند، جزو موادی که آلوده کننده دستگاه تنفسی و بیماری زا هستند، طبقه بندی می شوند. پنبه نسوز یک فیبر معدنی طبیعی است که در بیش از 3 هزار ماده ساختمانی و محصول تولیدی به کار می رود. این نوع الیاف تمایل دارند به الیاف بسیار ریزتر خرد شوند. به دلیل کوچک بودن ، این الیاف ممکن است بعد از پخش شدن در هوا برای مدت چند ساعت یا چند روز معلق باقی بمانند، الیاف پنبه نسوز در طبیعت پایدارند و هرگز تجزیه نمی شوند و حتی در مقابل مواد شیمیایی هم پایدارند و تبخیر نمی شوند. در آب هم غیرقابل حل هستند. این مواد باعث ایجاد سرطان ریه و مزوتلیوما که نوعی تومور خطرناک غشایی است و ریه را می پوشاند می شوند. آلودگی ذره ای هوا در مشاغل دیگری همچون تولید و فرآوری کربن سیاه و الیاف مصنوعی هم موجب ایجاد نگرانی در این زمینه می شود.

ذراتی که در شهرها معلق اند

با وجود این که میزان خالص آلودگی ذره ای هوای شهری ، با کم شدن نشر ذرات از صنایع و مراکز تولید انرژی کاهش یافته است ، غلظت ذرات فوق ریز ناشی از ترافیک ، افزایش پیدا کرده است. اگر دقت کرده باشید وقتی از شیبی با اتومبیل تان به سمت پایین حرکت می کنید، لنت های ترمز اتومبیل شما و سایرین ، بویی در هوا متصاعد می کند، که اغلب مردم از سمی بودن آن مطلع هستند، اما به طور معمول در ترافیک های سنگین شهری هم مقادیر بالایی از این مواد وارد هوا می شود که معمولا همه ما نسبت به آن بی توجهیم.
با توسعه روش های اندازه گیری ، آثار روشن تری از ذرات با اندازه کوچک تر مشاهده شده است. با این حال بسیاری از مطالعات کماکان ادامه دارند و خیلی کم به نتیجه رسیده اند. دانشمندان بر این عقیده اند که اثرات زیان آور آلودگی ذره ای هوا، به طور عمده به غلظت ذرات کوچک تر از 100 نانومتر ارتباط دارد و به غلظت جرمی ذرات بزرگتر چندان بستگی ندارد. به همین دلیل به نظر می رسد ترکیب اطلاعات به دست آمده از اپیدمی شناسی در محیطهای مختلف با داده های حاصل از مطالعات سم شناسی انجام گرفته بر روی حیوانات چندان هم دور از واقعیت نیست.

ذره ها بیماری زا هستند

بتازگی مطالعات اپیدمی شناسی ثابت کرده اند ارتباط مستقیمی بین افزایش مقطعی مواد ذره ای و افزایش بیماری و مرگ و میر ناشی از نارسایی های قلبی و عروقی وجود دارد. بیماران مسن تری که سابقه بیماری های قلبی یا تنفسی دارند و همین طور بیماران دیابتی ، در معرض خطر بیشتری قرار دارند. همچنین ثابت شده است که نشست ذرات در اندازه های نانو در کیسه های هوایی شش ها منجر به فعال شدن تولید سیتوکینینی به وسیله ماکروفاژها و سلول های کیسه های هوایی شده و التهاب سلول ها را به دنبال دارد.
نمونه های تصادفی از میان بزرگسالان سالم در معرض آلودگی ذره ای هوا، نشان داد که در پلاسمای خون این افراد میزان ویسکوزیته افزایش پیدا کرده است. اما با این وجود، هنوز هم به طور کامل مشخص نیست که این مسائل را می توان به نانوذرات تعمیم داد یا خیر و جنبه های دیگر آلودگی زای این ذرات تا چه طیفی گسترده اند. بررسی و مطالعات بیشتر در این زمینه بسیار ضروری به نظر می رسد.

کلمات کلیدی: نانو تکنولوژی


نوشته شده توسط مهدی 86/11/4:: 10:18 عصر     |     () نظر

4) پرتوهای چرنکوف در EAS:

برای انرژی های اولیه (کمتر از 20 ترا الکترون ولت) ریزش های هادرونیک در لایه های فوقانی اتمسفر نابود می شود اما پرتوهای چرنکوف توسط بارهایی که به ارتفاعات سطحی زمین نفوذ می کنند تولید می شوند.

اگرچه حرکت موجی این جریانات در نقطه ی نشات آنها و گسترش بعد از آن پرتوهای چرنکوف را دوباره به نقطه ی ابتدایی آنها (محل پرتوهای گامای ابتدایی در کره ی سماوی) بر می گرداند.

در ریزش های الکترومغناطیسی الکترون ها و پوزیترون ها اعضای تشکیل دهنده ی پرتوهای چرنکوف هستند.

این موضوع هنگامی درست است که انرژی ذرات از مقدار Min آستانه ی  فراتر رود. (همانطور که معادله ی 1.9 نشان می دهد).

این نهایت (آستانه) برابر با 21 مگا الکترون ولت در هنگام رصد می باشد که در ارتفاع 7.5 کیلومتری از سطح دریا یه 35 مگا الکترون ولت افزایش می یابد. علت این تغییر در  اختلاف بین سرعت آستانه ی پرتوهای چرنکوف است که طی واکنش های تجزیه ای در اتمسفر ایجاد می شود.

بر مبنای همین نوع از واکنش های تجزیه مقدار  را تخمین بزنیم.

می دانیم که سرعت نور در میانه ی مشخص از رابطه ی زیر بدست می آید:

(1.7)

که در آن C سرعت نور در خلا و n شاخص تجزیه در ارتفاع اتمسفری داده شده (H) است.

آنگاه می توانیم را به شکل زیر بنویسیم. (انرژی ذره ای نسبیتی (Relativistic Particle)است که با سرعتی معین حرکت می کند:

(1.8)

بنابراین اگر بنویسیم n = 1 + ? و آنگاهبرابر با  خواهد بود. که از آن خواهیم داشت:

(1.9)

حال می توانیم بهتر پرتوهای چرنکوف را در EAS بررسی و مطالعه کنیم. این کار می توان به دو صورت 1) بررسی گسترش طولی و یا 2) بررسی پراکندگی جانبی ریزش های ذره ای ادامه داد.

گسترش طولی این ریزش ها به معنای توزیع در نقطه ی گسیل فوتون های چرنکوف می باشد.

از شکل زیر می توان به آسانی دید که ریزش ها می توانند بعد از تیرگی (Blur) به Max خود برسند:

 

شکل (1.5): شبیه سازی مونته کارلو (Monte Carlo) در مورد توزیع طولی ریزش الکترومغناطیسی 1Tev

در سوی دیگر توزیع جانبی یک EAS (شکل1.6) در مورد پرتوهای چرنکوف در واقع همان بررسی نقطه ی ساتع کننده ی پرتوهای چرنکوف در سطح عمود به قطب ریزش است.

بنابراین  می بینیم که توزیع جانبی اینگونه حساس به گسترش طولی ریزش رفتار می کند.

در اصول توزیع جانبی می توان گفت که شیب توزیع جانبی مرتبط به ریزش است که می تواند در دیدگان رصدگران چنین گسترش یابد.

هنگامیکه ریزش ها به شدت در اتمسفر گسترش می یابند پدیداری توزیع را بیشتر نمایان می سازند که به این مدل خاص حلقه ی چرنکوف (Cherenkov Ring) می گویند.

شکل (1.6): نمودار توزیع جانبی پرتوهای چرنکوف بر وری زمین مخصوص به انواع خاصی از پرتوهای گاما و ریزش های هادرونیک.

پرتوهای گامای القا شده به ریزش یک توزیع جانبی و سطحی نسبیتی نور را در خارج 125 متری فاصله ی شعاعی از مرکز نشان می دهد. 


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 86/11/4:: 10:16 عصر     |     () نظر

2) ریزش های الکترومغناطیسی (Electromagnetic Cascades):

ریزش های الکترومغناطیس هنگامیکه انرژی ها در این فرآیند سهیم باشند (بر فراز اتمسفر) پرتوهای گاما را در جو غوطه ور می کنند.

در واقع این پدیده ها تولید ترکیبی همان اثرات غالب (Dominant Effect) هستند که البته این تنها در مورد ریزشهای پهناور جوی (Extensive Air Showers) صادق است. (این نوع از ریزش ها را در بخش بعدی بررسی می کنیم).

فرآیند تولید ترکیبی در زمینه ای از هسته های اتمسفری و یا الکترون ها به منظور حفظ نیروی حرکت صورت می گیرد.

طی این فرآیند یک فوتون با انرژی بالا (حداقل 1.022 مگا الکترون ولت) در ماده به یک جفت الکترون – پوزیترون تبدیل می شود.

اگر انرژی کافی باشد جفت الکترون نهایی انرژی خود را به سرعت بوسیله ی واکنش یونی از دست نخواهد داد. در مقابل یک الکترون در زمینه ای از ذرات بنیادین هسته می تواند اشعه ی گامای ثانویه را تولید کند. این تولید همان اثر بزامشتراهلونگ نامیده می شود.

این اشعه ی گاما (اگر انرژی هنوز از 1.022 مگا الکترون ولت بیشتر باشد) می تواند جفت الکترونی دیگری را تولید کند که آنها می توانند واکنش های بزامشتراهلونگ بیشتری را تحمل کنند.

که در نهایت نتیجه ی آن یک ریزش فوتونی – الکترونی و پوزیترونی خواهد بود که می توانند در مسیر قبلی حرکت اشعه های گاما حرکت کرده و در انرژی کل سهیم باشند.

3) ریزش های فراگیر جوی (Extensive Air Showers [EAS]):

ریزش های فراگیر جوی تا قبل از واضح شدن ابهامات در مورد پرتوهای کیهانی در سال 1927 وجود نداشت.

همچنین تمامی فرضیه ها در مقابل توضیح پرتوهای کیهانی به صورت فوتونیک (با قالب نوری) از خواص ذره ای دفاع می کردند.

اما امروزه با درک کامل پرتوهای کیهانی توانسته ایم منشا تمام ذرات و پرتوهای پر انرژی را که از فضای خارجی وارد زمین می شوند بفهمیم.

در حقیقیت پرتوهای کیهانی از هسته ی اتم (96 درصد هیدروژن – 3 درصد هلیم – 1 درصد کربن – نیتروژن – اکسیژن – فلئور) + پرتوهای گاما - الکترون ها - پوزیترون ها – نوترینو ها و انواع دیگر ذرات بنیادی تشکیل شده اند.

پرتوهای کیهانی تا قبل از اینکه به زمین برسند از منابع پرتوزا نشات می گیرند که البته بعضی از مواد متشکل آنها طی فرآیند گذر از کهشکان ها به دلیل انجام واکنش های میان ستاره ای (از قبیل: تجزیه و یونیزه شدن) بوجود می آیند.

در واقع مواد متشکل نام برده چیزی است که به زمین می رسد. به همین دلیل ترکیب اصلی دیگری را برای پرتوهای کیهانی پیش بینی می کنیم.

اصولا همین ترکیبات نیز هنگامیکه به اتمسفر زمین می رسند طی واکنش هایی با هسته های تشکیل دهنده ی اتمسفر به ذرات ثانویه ای تبدیل می شوند که ریزش های فراگیر جوی نام دارند.

ذرات اولیه ی EAS در لایه های فوقانی جو بیشتر تشکیل شده از هسته های اتمی – فوتون ها و پرتوهای آلفا هستند. (به صورت مقداری از هسته های سنگین کمتر هستند).

توزیع اینگونه از وقایع ترکیبی هستند و طیف ها خبر از انرژی بالای 10^20 الکترون ولت می دهند که این مقدار برای پرتوهای آلفا زیاد است.

بنابراین شاید به  صورت تقریبی این دسته از فرایندها را بتوان دنباله روی قانون سلطه (Potency Law) دانست.

این طیف ها را می توان به پرتوهای گاما ربط داد: 

  E

 که در آن ? تقریبا 2.6 است.

هیچ کدام از این ذرات پر انرژی به زمین نمی رسند و تنها از این فرآیند مقدار کمی پرتوی گاما (1 از 1000) به صورت EAS در جو تولید می شود.

 


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 86/11/4:: 10:16 عصر     |     () نظر

1) ریزش های هادرونیک (Hadronic Cascades):

 این ریزش ها بیشتر از ذراتی مانند پروتون ها تشکیل شده اند و پرتوزایی خود آنها باعث تجزیه ی آنها بر فراز جو می شود.

می توانیم این عمل متقابل را به صورت زیر نیز بنویسیم:

 Cosmic Ray (CR) + Atmospheric Nuclei (AN) CR" + AN" + n + m  + other mesons

که در این معادله  CR" باقیمانده ی اصلی پرتوهای کیهانی می باشد که می تواند باعث ایجاد واکنش های بیشتری با هسته های اتمسفری شود.

اگر اصل پرتوهای کیهانی انرژی کافی را داشته باشند حتی پرتوها می توانند به سطح زمین نیز برسند.

AN" باقیمانده ی هسته های اتمسفری می باشد که دارای انرژی بالایی هستند.

همچنین مقدار تولیدی ار تجزیه ی هسته ها نیز همان(مزون ها) می باشند که می توانند در دنباله ی مادون تولید مزونی پرتوزا کنند.


پرتوزاییدر دو مرحله از انرژی پرتوهای گاما می تواند سرچشمه ی جز اصلی الکترومغناطیس ریزش باشد زیرا از این به بعد الکترون ها و پرتوهای گامای تولید شده می توانند دارای جز اصلی ساخته شده از الکترون ها و یا گاماهایی باشند که در پدیده ی بزامشتراهلونگ (Bremsstrahlung) {تابش ترمزی} یا در ترکیب دوتایی تولید شده اند.

شکل: مدل هندسی پرتوزایی تشعشعات چرنکوف برای اشعه ی گاما و ریزش هادرونیک

همچنین فرآیندی که در آن این مادون ریزش ها توسعه می یابند (مانند فرآیند الکترومغناطیس) خالص است.

 


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 86/11/4:: 10:15 عصر     |     () نظر
<   <<   16   17   18   19   20   >>   >