برترین ذخیره، دانشی است که بدان عمل شود و احسانی است که بدان منّت ننهند . [امام علی علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ


تصویر
شکافت ، نمونه‌ای از واکنشهای زنجیری

واکنشی را که دارای چندین مرحله است و در هر مرحله آن یک جسم واکنش پذیر بوجود می‌آید که موجب اجرا شدن مرحله بعدی می‌شود، واکنش زنجیری می‌نامند. گرچه ممکن است واکنشهای زنجیری در جزئیات با یکدیگر تفاوتهای زیادی داشته باشند، همگی در بعضی ویژگیهای اساسی وجه مشترک دارند.
کلراسیون متان ، یک واکنش زنجیری

مرحله آغاز زنجیر

نخستین مرحله در واکنشهای زنجیری ، مرحله آغاز زنجیر است که در آن ، انرژی جذب می‌شود و یک ذره واکنش پذیر بوجود می‌آید. این مرحله ، در واکنش کلراسیون متان ، گسستن مولکول کلر به اتمهای کلر است.


گرما یا نور


مرحله انتشار زنجیر

چند مرحله انشتار زنجیر وجود دارد در هر یک از این مراحل ، یک ذره واکنش پذیر مصرف می‌شود و ذره‌ای دیگر بوجود می‌آید، در واکنش کلراسیون متان ، این مراحل عبارتند از واکنشهای اتمهای کلر با متان:





و واکنش رادیکالهای متیل به مولکول کلر:







مرحله پایان زنجیر

سرانجام مراحل پایان زنجیر وجود دارند. در این مراحل ، ذرات واکنش پذیر مصرف می‌شوند، ولی بوجود نمی‌آیند. در کلراسیون متان ، این مراحل شامل اتحاد دو ذره واکنش پذیر یا جذب یکی از آنها بوسیله دیواره‌های ظرف واکنش است.


>



در شرایط معین به ازای هر کوانتوم نور (فوتون) جذب شده ، در حدود 10000 مولکول متیل کلرید تشکیل می‌شود. هر فوتون موجب گسستن یک مولکول کلر به دو اتم کلر می‌شود و هر اتم کلر یک زنجیر آغاز می‌کند، بطور میانگین هر زنجیر پیش از آنکه در نهایت پایان پذیرد، در چرخه انتشار زنجیر 5000 بار تکرار می‌شود.

واکنش گاز و گاز

واکنش بین گاز و بخار ، در 200 نمونه‌ای دیگر از واکنش زنجیری است. می‌توان مراحل این نوع واکنش را بصورت زیر نشان داد:


  • مرحله آغاز زنجیر: برخی از مولکولهای به اتمهای آن تفکیک می شود:

 

  • مرحله انتشار زنجیر: رادیکالهای ، واسطهای فعالی هستند که پیشبرنده‌های زنجیر نامیده می‌شوند. یک رادیکال Br با یک مولکول ترکیب می‌شود:



در این واکنش ، یک مولکول محصول ، و یک پیشبرنده دیگر ، یک اتم (رادیکال) ، تولید می‌شود. رادیکال با مولکول ترکیب می‌شود:




در این واکنش یک مولکول دیگر و یک رادیکال که پیشبرنده اصلی زنجیر است، تولید می‌شود. اتم با یک مولکول دیگر ترکیب می‌شود و این چرخه مجددا آغاز می گردد. این دو مرحله ، چندین بار تکرار می‌شود.


  • مرحله بازداری زنجیر: با برخورد یک رادیکال با یک مولکول ، واکنشها رخ می‌دهد که بازدارنده واکنش کل است:



چون در این مرحله ، یک مولکول محصول () مصرف شده و یک مولکول واکنش دهنده () تولید می‌گردد، این مرحله واکنش کل را آهسته می‌کند، ولی موجب گسسته شدن زنجیر یا توقف واکنش نمی‌شود. زیرا پیشبرنده زنجیر () نیز در این مرحله تولید می‌شود.



تصویر
شکافت هسته‌ای


 

  • مرحله پایان زنجیر: وقتی دو پیشبرنده بهم می‌رسند، انتهای دو زنجیر بسته می‌شود:

باور بر این است که مکانیسم واکنش و نظیر این مکانیسم باشد مخلوطی از این دو گاز را می‌توان در دمای معمولی و در تاریکی به مدت مدیدی نگهداری کرد، بدون اینکه باهم ترکیب شوند. ولی اگر این مخلوط در معرض نور قرار گیرد، واکنشی بسیار سریع صورت می‌گیرد. باور بر این است که مولکولهای در معرض نور به اتمهای کلر تفکیک شده و واکنش زنجیری را آغاز می‌کنند. واکنش و نیز به نور حساسیت دارد ولی این واکنش در دمای معمولی آهسته‌تر است.

بازدارنده‌های واکنش زنجیری

هر جسمی که حتی به مقدار کم از سرعت یک واکنش بکاهد و یا آن را متوقف کند، بازدارنده نامیده می‌شود. مدت زمانی را که در جریان آن عمل بازدارندگی طول می‌کشد و بعد از آن ، واکنش بطور عادی پیشرفت می‌کند، دوره بازداری می‌نامند. بازداشتن بوسیله مقدار نسبتا" کم از یک ماده افزودنی ، یکی از ویژگیهای انواع واکنشهای زنجیری است و اغلب یکی از سرنخهایی است که در مراحل ابتدایی به ما می‌گوید با یک واکنش زنجیری سر و کار داریم.

فهمیدن این مطلب که چگونه شمار کمی مولکول می‌توانند از واکنش آن همه مولکول جلوگیری کنند، دشوار است. به عنوان مثال مقدار کمی اکسیژن از سرعت واکنش کلراسیون متان برای مدتی ، که به مقدار اکسیژن بستگی دارد، می‌کاهد و بعد از آن واکنش با سرعت معمولی خود پیش می رود. تصور می‌رود که اکسیژن با رادیکال متیل می‌دهد و یک رادیکال جدید بوجود می‌آورد:



رادیکال خیلی واکنش ناپذیرتر از رادیکال است و برای ادامه زنجیر ، کارآیی چندانی ندارد. وقتی یک مولکول اکسیژن با یک رادیکال متیل ترکیب می شود، یک زنجیر را می‌شکند و به این ترتیب از تشکیل شدن هزاران مولکول متیل کلرید جلوگیری می‌کند. البته این کار فوق‌العاده از سرعت واکنش می‌کاهد. بعد از آنکه تمام مولکولهای اکسیژن موجود با رادیکالهای متیل ترکیب شدند، واکنش آزاد است که با سرعت معمولی خود پیشرفت کند.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/1/18:: 11:10 عصر     |     () نظر
ریشه لغوی
یونانیان واژه متیورولوگیا را ، برگرفته از کلمه «متیوروس» ، به معنی اشیای معلق در آزمایشهای مربوط به هوا ، به اضافه «لوگوس» که به خطابه یا درس ترجمه شده است، برای این علم بکار برده‌اند. لیکن ، امروزه مطالعه جو زمین چنان به رشته‌های تخصصی تقسیم شده است که واژه فراگیر متئورولوژی (هواشناسی) که از یونانیان باستان بر جای مانده است، هیچ کس را ارضا نمی‌کند. از اینرو ، برای مطالعه بخشی از جو که در آن یونش و گسست مهم است و روی هم رفته بالاتر از ارتفاع حدود 35Km قرار دارد، واژه آیرونومی (نزدیک جو بالا) را بکار می‌برند، در حالی که برخی ، به عنوان نامی فراگیر ، علم (یا علوم) جو را می‌پسندند.

تصویر

نگاه اجمالی

مطالعه و پژوهش درباره تمامی جنبه‌های جو زمین که بطور تفصیلی از سطح زمین تا سطح بالایی جو را در بر می‌گیرد، امروزه تحت عنوان علوم جوی نامیده می‌شود. واژه قدیمی و مصطلحتر هواشناسی مطالعه مطوح پایانی جو را ، که دارای تغییرات دائمی است، شامل می‌شود. بشر از ابتدای خلقت به دلیل تماس نزدیک با طبیعت و مشاهده عینی پدیده‌های جوی همواره نسبت به کشف این پدیده‌ها کنجکاوی نشان داده است. اولین تجربه عینی پدیده‌های جوی شاید مشاهده رعد و برق و آتش گرفتن جنگلها بوده که بعدها به کشف آتش منجر شده است. همچنین اولین کوشش انسان برای تهیه غذا و کشاورزی نیز همراه با دیده بانی هوا بوده است.

هواشناسی شاخه‌ای تخصصی از فیزیک پیشرفته است که از ابزارهای ریاضی پیچیده‌ای بهره می‌گیرد و بر همه علوم فیزیک تکیه‌ای استوار دارد. هواشناسی بیش از همه با نظریه تابش الکترومغناطیسی ، ترمودینامیک ، مکانیک کلاسیک ، فیزیک شاره‌ها ، شیمی فیزیک و نظریه لایه مرزی سر و کار دارد. اگر جو زیرین نیز در آن گنجانده شود، فیزیک خورشید ، طیف شناسی ، فیزیک پلاسما ، یونش ، فیزیک ذرات بنیادی ، پدیده‌های اشعه ایکس ، نور شناخت ، فیزیک پرتوی کیهانی ، پدیده های برانگیزش ، الکترودینامیک ، مگنتوهیدرودینامیک ، انتشار رادیویی و سایر فرآیندهای مربوطه را نیز باید فرا گرفت.

تصویر

تاریخچه

اولین بار ادموند هالی به سال 1688 اسنادی را در زمینه پدیده‌های جوی و نقشه‌های مربوطه به بادهای متواتر در سطح اقیانوسها ، برای بخشی از سطح زمین منتشر می‌کند و در سال 1840 هوری نقشه بادهای اقیانوسها را ترسیم و توان و جهت وزش آنها را مشخص می‌سازد و بدین ترتیب در رفع نیاز دریانوردی گامی برداشته می‌شود.

سیر تحولی و رشد

در اواخر قرن نوزدهم مطالعات جو شناسی در سطح زمین بویژه در زمینه اندازه گیری بارانها توسعه پیدا می‌کند و از سال 1916 مطالعه پدیده‌های جوی در زمینه پیش‌بینی هوا شکل می‌یابد و این بررسیها بر مبنای ویژگیهای سیستماتیک صورت می‌گیرد. در سالهای بعد ، توسعه هوانوردی پیش بینیهای دقیقتری را در وسعت گسترده‌ای ایجاب می‌کند و آگاهی هوانوردان از حالات احتمالی آزمایشهای مربوط به هوا در ناحیه معین و برای یک لحظه از زمان الزامی می‌نماید و به منظور رفع همین نیاز هست که در پاره‌ای از نقاط دنیا سازمانهای هواشناسی بوجود می‌آید.

تصویر




به تدریج به موازات توسعه شناساییهای علمی ، برای بهره گیری منطقی از منابع اقتصادی زمین به آگاهیهای بیشتری از پدیده‌های جوی احساس نیز می‌شود، به گونه‌ای که برای شناخت قدرت هیدرولیکی ناهمواریها و "نفت سفید" کوهستانها به عنوان منبع زایش آبها ، تعیین حجم متوسط آب رودخانه‌ها در رابطه با نوسان میزان بارندگی سالانه حوضه‌ها مورد توجه قرار می‌گیرد. همچنین پیشرفت علم کشاورزی به منظور کاشت و برداشت محصولات کشاورزی ، مهندسین زراعی را به کسب اطلاعاتی در زمینه آب و هواشناسی وا‌ می‌دارد و همین نیاز به عنوان انگیزه دیگری در پیشرفت تحقیقات کلیماتولوژی موثر می‌افتد.

شاخه‌های هواشناسی

  • هواشناسی فیزیکی: بررسی ویژگیها و منشا تغییرات عوامل آب و هوا را مد نظر دارد.
  • هواشناسی دینامیکی: به مطالعه توده‌های هوا و بررسی عوامل انرژی مجموعه اتمسفر و یا جریانات اتمسفری می‌پردازد.
  • هواشناسی اتمسفر آزاد: پدیده‌های اتمسفر را از سطح زمین تا ارتفاعات بیشتر مطالعه می‌کند.
  • هواشناسی زیستی
  • هواشناسی کشاورزی
  • هواشناسی هوانوردی
  • هواشناسی مهندسی
  • هیدروکلیماتولوژی

 



نوشته شده توسط مهدی 85/1/16:: 3:2 عصر     |     () نظر

مقدمه
آنچه که ما به عنوان ابر می‌شناسیم در واقع تجمع ذرات بخار آب موجود در جو به دور هسته‌های تراکم و سرد شدن آنهاست. از آنجا که با مشاهده نوع و نحوه تغییرات ابرها می‌توان اطلاعات قابل ملاحظه‌ای درباره وضعیت جو بدست آورد، مطالعه و بررسی ابرها دارای اهمیت ویژه‌ای است. عامل اصلی تشکیل ابر صعود هوای گرم و مرطوب به سطح فوقانی جو و سرد شدن آن است و در صعود به ارتفاعات بالاتر جو تحت تأثیر فشار کم آن سطوح قرار گرفته و همگام با انبساط سرد می‌شود.

تصویر

عومل موثر در صعود هوا

تربولانس مکانیکی (اصطکاکی)

این تربولانس در اثر عبور هوا بر روی ناهمواریهای سطح زمین ، در اثر برش باد و تغییرات بردار باد در جهت قائم نیز ایجاد می‌شود. بخشی از هوا که با مرز ساکن در تماس است خود نیز در حال سکون می‌باشد، اما با بالا رفتن هوا بر سرعت آن نیز افزوده می‌شود. با افزایش سرعت هوا به بیش از یک مقدار مشخص حرکات تربولانس ایجاد می‌شود. این تربولانس بیشتر باعث تشکیل ابرهای پوششی می‌شود.

تربولانس حرارتی (جابجایی عمودی)

این تربولانس نتیجه تابش خورشید بر خشکیها و گرم شدن سطح زمین است. اما گاهی این پدیده به علت عبور توده‌های سرد بر روی زمین گرم یا دریای گرمتر نیز بوجود می‌آید. این حرکت بیشتر در ایجاد ابرهای جوششی اهمیت دارد.

صعود در اثر ناهمواریها

هوای نزدیک سطح زمین و سطح فوقانی در صورت برخورد با موانع طبیعی مثل کوهستان وادار به صعود می‌شوند.

صعود ملایم و گسترده

بیشتر در اثر واگرایی سطوح فوقانی تروپوسفر بوجود می‌آید. در اثر جروج هوا در سطح فوقانی جرم ستون هوا در سطح زمین کاهش یافته و در نتیجه فشار ستون هوا در سطح زمین کاهش می‌یابد. این واگرایی در سطوح بالا و همگرایی در سطوح پایین باعث صعود ملایم و گسترده هوا در عمق زیادی از تروپوسفر می‌شود. در صورت وجود رطوبت کافی توسعه ابر بصورت گسترده روی خواهد داد. صعود ملایم و گسترده روی خواهد داد. صعود ملایم و گسترده بیشتر در نزدیکی منطقه جبهه و مرکز کم فشار رخ می‌دهد.

چرا ابرها از آسمان نمی‌افتند؟

ابرها از قطرات ریز آب و یا از بلورهای یخ و گاهی اوقات نیز از مخلوطی از این دو می‌باشند. معمولا ابر هنگامی تشکیل می‌شود که هوا به بالا رانده شود. چون هوای موجود در لایه‌های پایینتر نسبت به هوای موجود در بالا گرمتر بوده و از تراکم کمتری نیز برخوردار می‌باشد. لذا به بالا می‌رود (برخی اوقات نیز علت این رانش ، حرکت هوا به سمت بالای کوه و قله آن است). هنگامی که هوا به سمت بالا می‌رود، سرد می‌شود و سرانجام به سطحی می‌رسد که به سطح انقباض معروف است. در این هنگام هوا اشباع و بخار آب موجود در آن منقبض و متراکم می‌شود و به قطرات آب تبدیل می‌گردد.

اما اگر ابرها دوباره به سمت زمین می‌آمدند، هوا به تدریج گرم می‌شد و همینطور که آب پایین می‌آمد از سطح انقاض عبور می‌کرد و از آن خارج می‌شد، در نتیجه قطرات آب دوباره به حالت بخار در می‌آمدند و بدین ترتیب ابر از بین می‌رفت. در برخی مواقع ابر در لایه‌های بسیار پایین نیز وجود دارد و این همان چیزی است که به مه معروف است. مه در واقع ابری است که در سطح زمین تشکیل می‌شود. در صورتی که سطح انقباض در ارتفاع بسیار پایین قرار داشته باشد، باعث می‌شود که هوا در نزدیکی سطح ومین اشباع و بخار آب موجود در آن منقبض شود و تبدیل به مه یا ابر نزدیک به زمین گردد.

نامگذاری ابرها

در نامگذاری ابرها از کلمات لاتین با ریشه یونانی استفاده می‌شود. این نامگذاری با توجه به نوع و شکل و همچنین خصوصیات ابر انجام می‌گیرد. در جدول زیر کلماتی که در نامگذاری ابرها بیشتر مورد استفاده قرار می‌گیرد را با معانی آورده شده:

معنی کلمه مشتق شده کلمه اصلی
ارتفاع میانه Alto Altus
پر مانند Cirro Cirrus
برجسته شده Cumulo Cumulus
بارانزا Nimbo Nimbus
ورقه ورقه Strata Stratus


سایر کلماتی که بکار می‌برند:

معنی کلمه
برجی شکل Castellsnus
گل کلمی Congestus
قلاب شکل Uncinus
عدسی شکل Lenticularis
قطعه قطعه شده Fractus
از نظر عمودی خوب رشد نکرده Humilis

دسته‌های ابر

ابرها دارای ده دسته اصلی هستند که هر کدام از این ده دسته اصلی خود به یک یا چند دسته دیگر تقسیم می‌شوند. دسته‌های اصلی عبارتند از:

  1. سیروس Ci
  2. سیرو کومولوس Cc
  3. سیرو استراتوس Cs
  4. آلتو کومولوس Ac
  5. آلتو استراتوس As
  6. نیمبو استراتوس Ns
  7. استراتو کومولوس Sc
  8. استراتوس St
  9. کومولوس CU
  10. کومولو نیمبوس Cb

طبقه بندی ابرها

ابرها را از چند دیدگاه مختلف طبقه بندی می‌کنند:

  1. از نقطه نظر ترکیب
  2. از نقطه نظر شدت و سرعت فرآیند تراکمی که منجر به تشکیل ابر می‌شود.
  3. از نقطه نظر ارتفاع کف ابر از سطح زمین:
    • ابرهای پایین
    • ابرهای میانی
    • ابرهای بالا
تصویر

 

تصویر

 

تصویر


تفاوتی که ما در شکل ابرها می‌بینیم، نتیجه تفاوت در شدت و سرعت عمل فرآیند تراکمی است که منجر به تشکیل ابر می‌شود. از این منظر ابرها را به دو گروه تقسیم می‌کنند:

  1. ابرهای پوششی
  2. ابرهای جوششی

رابطه ابرها و جبهه‌ها

نزدیک شدن جبهه گرم با ظهور ابرهای سیروس و سیرو استراتوس که پیوسته ضخیم می‌شوند مشخص می‌گردد. در صورت وجود توربولانس امکان تشکیل سیرو کومولوس نیز وجود دارد. با نزدیکتر شدن جبهه گرم و پایین آمدن هوای گرم ابرهای میانی نظیر آلتو استراتوس و آلتو کومولوس نیز بوجود می‌آیند. گسترش این ابرها امکان بارش را نیز زیاد می‌کند.

تصویر

از بین رفتن ابر

با توقف تمام فرآیندهای تشکیل ابر توسعه طبیعی آن نیز تضعیف می‌گردد. همچنین عواملی مانند گرم شدن هوا و بارش و اختلاط با هوای خشک اطراف باعث کاهش قطرات آب و کرستالهای یخی در ابر شده و بدین تدتیب ابر از بین می‌رود. عوامل مهم در از بین رفتن ابر:

  1. گرم شدن ابر
  2. کاهش رطوبت نسبی
  3. خور تابگیری
  4. کاهش انرژی تابشی
  5. اختلاط ابر با هوای غیر اشباع اطراف
  6. بارش


نوشته شده توسط مهدی 85/1/16:: 2:52 عصر     |     () نظر



هسته مجموعه‌ای از ذرات باردار با بار مثبت می‌باشد که در یک حجم فوق‌العاده کوچک تمرکز یافته‌اند و با نیروی بسیار قوی و برد کوتاه (نیروی برهمکنش قوی هسته‌ای) بهم مقید شده‌اند که این مجموعه متراکم ، کل جرم اتم را در خود دارد و الکترون‌ها در اوربیتال‌هایی ، حول این نقطه چگال مرکزی در حال دوران هستند.

 

img/daneshnameh_up/e/ec/hhhh.jpg

اجزای اصلی هسته

ذرات اساسی که کلیه هسته‌ها از آنها ترکیب شده است، عبارتند از:

  • پروتون‌ها

  • نوترون‌ها

خواص اساسی هسته

این خواص بر دونوع است که عبارتند از :
خواص مستقل از زمان : خواصی هستند که وابسته به زمان نیستند. مانند جرم ، اندازه ، بار
خواص وابسته به زمان : خواصی هستند که وابستگی به زمان دارند. مانند واپاشی پرتوزا و واکنشهای هسته‌ای
جرم و بار هسته

جرم هسته را می‌توان با این فرمول زیر پیدا کرد : M=Z×Mh + N×Mn که در آن ، M جرم هسته ، Mh جرم یک اتم هیدروژن یا جرم پروتون و Mn جرم نوترون می‌باشند.

img/daneshnameh_up/a/ac/atom.jpg

شعاع هسته

آزمایش‌های دقیق‌تر با بهره‌گیری از پراگندگی ذرات هسته‌ای دیگر و الکترون‌ها نشان داده‌اند. شعاعی که در آن ، آثار هسته‌ای ظاهر می‌شود، از رابطه زیر بدست می‌آید:

R=R0 A1/3
که در آن ، R0 ثابت شعاع دارای این مقادیر است:R0=1.2 F , 1.4 F که در آن F نماد فرمی ، واحد طول هسته‌ای است و A جرم اتمی می‌باشند.
خواص دینامیکی هسته

  • هسته‌ها مانند اتم‌ها می‌توانند در حالت برانگیخته با انرژی‌های معین باشند. گذارهای بین حالت‌های برانگیخته با گسیل تابش الکترو مغناطیسی صورت می گیرد (اشعه گاما).

  • هسته‌ها همچنین می‌توانند به یگدیگر تبدیل شوند. بعضی از تبدیل‌ها خود به‌ خود با گسیل الکترون‌های مثبت یا منفی (ذره بتا) یا گسیل ذره آلفا صورت می‌گیرد.

  • تبدیل‌های متنوعی را می‌توان توسط بمباران هسته‌ای القاء کرد.

  • قانون بقای ذرات: تعداد نوکلئون‌ها تحت هر شرایطی و هر تبدیلی پایسته است(مجموعشان ثابت است).

 

پروتون

مقدمه
اتم هیدروژن در واقع حالت مقید یک الکترون و یک پروتون است. هسته اتمی عناصر دیگر از پروتونها و نوترونهایی تشکیل می‌شود که با برهمکنشی قوی در قید یکدیگرند. پروتونهای آزاد را می‌توان هم در پرتوهای کیهانی یافت و هم با شتاب دهنده‌های ذرات تولید کرد. در آزمایشهای ویلهلم وین در سال 1898 و آزمایشهای متأخر جوزف تامسون در سال 1910، در میان ذرات یافت شده در جریانهای گازی یونیده ، ذره آلی با بار مثبت شناسایی شد که جرم آن تقریبا با جرم اتم هیدروژن بود.

در سال 1911 ارنست رادرفورد، در آزمایشهایی که در آنها که نیتروژن با ذرات آلفا بمباران می شد، دوباره با چنین ذرات باردار مثبتی روبرو شد و آنرا به عنوان هسته هیدروژن شناسایی کرد. تا سال 1920، او به این نتیجه رسیده بود که این ذره ، ذره بنیادی است و با توجه به این که واژه "protos" ، در زبان یونانی به معنی نخستین است، آنرا پروتون نامید تا موقعیت اولیه در خور اهمیت آن را در میان هسته‌های اتمی عناصر نشان دهد.



تصویر




جرم پروتون

جرم پروتون برابر است با mp = 938.272 MeV/C2 = 1.6726X10-27 Kg جرم پروتون 1836 برابر جرم الکترون است. برای مشاهده واپاشی پروتون به ذرات سبکتر ، جستجوی تجربی فراوانی انجام شده ، ولی تا به حال نتیجه‌ای حاصل نشده است. مستقل از مد واپاشی ، حد پایین طول عمر میانگین پروتون ، τ ، را می توان حدود 1025 سال دانست. عمر میانگین پروتون در بعضی از مدهای واپاشی خاص به حد بالاتری می‌رسد، برای مثال در واپاشی p → e+ + π0 مقدار τ بزرگتر از 1032 سال است.

بار الکتریکی

بار الکتریکی پروتون مثبت است. این بار در مقایسه با بار الکترون مقداری مساوی و علامتی مخالف دارد. qp = -qe = -e شواهد تجربی نشان می‌دهد که ماده (از لحاظ بار الکتریبکی) خمثی است و در آن lim (|qp + qe|/e)<1021 است. حد گشت و در دو قطبی الکتریکی پروتون ، dp ، کمتر از 7-10 emf است (1fm = 10-15m) ، و میانگین مربعی شعاع بار پروتون که در آزمایشهای پراکندگی الکترون از پروتون بدست می‌آید، در حدود 0.72fm2 است. پروتون دارای تکانه زوایه ای h/2 ، پاریته مثبت و گشتاور مغناطیسی 2.792847µN است (µN مگنتون هسته‌ای است).


µN = eh/2mpc = 0.1050 efm = 3.152X10-14MeV/T-1

نوترون ذره‌ای است که ساختارش شباهتهای فراوانی به ساختار پروتون دارد. تشابه جرم پروتونم و نوترونها ، در کنار یکسان بودن تکانه زاویه‌ای (اسپین) هر ذره یکسانی تقریبی برهمکنشی قوی میان پروتونها و برهمکنش قوی میان نوترونها ، به معنی مفهوم ایزوسپین منجر می‌شود. پروتون و نوترون را مشترکا نوکلئون می‌نامند. نوکلئون به دسته ذراتی که باریون نامیده می‌شود تعلق دارد. باریون تکانه زاویه‌ای نیمه صحیح (با یکای h) دارد. نوکلئون سبکترین باریون است.
تصویر




پاد پروتون (ضد پروتون)

پروتون پاد ذره‌ای به نام پاد پروتون دارد. پاد پروتون را اوئن چمبرلین ، امیلیو سگره ، کلاید ویگاند و توماس یسپسیلانتیس در سال 1955 میلادی ، با استفاده از بواترون در آزمایشگاه تابش برکلی ، کشف کردند. پس از مدت زمان کوتاهی ، پاد نوترون نیز با استفاده از همین بواترون کشف شد.

ترتیب در هسته اتم

هسته هر اتمی از پروتونها و نوترونها (یا نوکلئونها) تشکیل می‌شود. و این نوکلئونها از طریق برهمکنش قوی با یکدیگر پیوند دارند. ترکیب پروتونها و نوترونها در هر هسته معین بصورت A Z نشان داده نی شود که در آن ، A = Z+N است ، N و Z به ترتیب تعداد نوترونها و تعداد پروتونها است. تعداد پروتونها در هسته ، تعیین کننده تعداد الکترونهای اتم و در نتیجه تعیین کننده ویژگیهای اتمی (یا شیمیایی) است. در نمایش A Z ، علامت Z را اغلب با نماد شیمیایی اتم جایگزین می‌کنند.

ایزوتوپها

ایزوتوپها هسته‌هایی هستند که تعداد پروتونهای آنها باهم برابر ، ولی تعداد نوترونهایشان باهم متفاوت است. برای مثال ، ایزوتوپهای پایدار کلسیوم (Z = 20) عبارتند از: 48Ca ، 46Ca ، 44Ca ، 42Ca ، 40Ca. برای پایدارترین ایزوتوپهای عناصر سبک داریم : Z < N ، که این امر به دلیل قویتربودن برهمکنش پروتون - نوترون در مقایسه با برهمکنش پروتون - پروتون و نوترون - نوترون و همچنین به دلیل این است که انرژی جنبشی برای N = Z کمینه می‌شود. برای عناصر سنگینتر ، تأثیر دافعه کولنی بین پروتونها بطور نسبی مهمتر می‌شود و در نتیجه در پایدارترین ایزوتوپ داریم: N > Z.

خواص نوکلئونها در برقراری قوانین پایستگی و تعیین دقت آنها حائز اهمیت است. پایداری پروتون ، به مفهوم باریون منجر می‌شود. به نوکلئون و الکترون ، به ترتیب عددهای بار Bn = 1 و Bn = 0 نسبت می‌دهند. قاعده پایستگی عدد بار یونی ، همراه با این واقعیت که پروتون سبکترین باریون است، مانع از واپاشی پروتون می‌شود. با این همه نظریه وحدت بزرگ (GUT) پیش بینی می‌کند که بوزونهای پیمانه‌ای ابر سنگینی وجود دارند که در برهمکنش آنها ناپایستگی باریونها مجاز است، در نتیجه پروتون می‌تواند واپاشیده شود. حد تجربی طول عمر پروتون ، این مدلها را به شدت مقید می‌کند. برعکس الکترونها ، نوکلئونها ذرات بنیادی هستند.

کاربرد

برای مطالعه ساختار درونی پروتون و تولید ذرات جدید ، پروتون را تا انرژی حدود 106 Mev (معادل 1TeV) شتاب می‌دهند تا با الکترونها ، پروتونها یا هسته‌ها برخورد کند. پروتونهای شتابدار ، یا مستقیما از طریق نوترونهایی که در واکنشهای بعدی تولید می‌شوند. برای نابود کردن بافتهای سرطانی نیز مورد استفاده قرار می‌گیرند. پروتونها ، بخش اصلی پروتونهای کیهانی را تشکیل می‌دهند. پروتونهای با انرژی بسیار زیاد ، وقتی که وارد لایه بالایی جو می‌شوند، سرانجام در برخورد با هسته‌ها ، رگباری ذره‌ای پدید می‌آورند که چون به زمین می‌رسند بطور تجربی قابل آشکار سازی هستند.

 

 

الکترون

نگاه اجمالی

ذره بنیادی پایداری با بار الکتریکی منفی 1.602X10-19 کولن و جرم در حال سکون 9.109X10-31 کیلوگرم. الکترونها در همه اتمها حضور دارند و در لایه‌های خاصی به دور هسته اتم می چرخند.

سیر تحولی و رشد

در نظریه‌های دالتون و و نظریه‌های یونانیان ، اتمها کوچکترین اجزای ممکن ماده بودند. اما در اواخر سده نوزدهم کم کم معلوم شد که اتم خود از ذراتی کوچکتر ترکیب یافته است. این تغییر دیدگاه ، نتیجه آزمایشهایی بود که با الکتریسیته به عمل آمد. در 1807 - 1808 شیمیدان انگلیسی همفری دیوی با تجزیه مواد مرکب توسط الکتریسیته ، پنج عنصر پتاسیم ، سدیم ، کلسیم ، استرونسیم و باریم را کشف کرد و دیوی با این کار به این نتیجه رسید که عناصر با جاذبه‌هایی که ماهیتا الکتریکی هستند بهم وصل می‌شوند.

در سال 1833 - 1832 مایکل فارادی مجموعه آزمایشهای مهمی در زمینه برقکافت شیمیایی انجام داد. در فرآیند برقکافت ، مواد مرکب بوسیله الکتریسیته تجزیه می‌شوند. فارادی رابطه بین مقدار الکتریسیته مصرف شده و مقدار ماده مرکب تجزیه شده را بررسی کرد و فرمول قوانین برقکافت را بدست آورد. بر مبنای کار فارادی ، جرج جانستون استونی در سال 1874 به طرح این مسأله پرداخت که: واحدهای بار الکتریکی با اتمها پیوستگی دارند. او در سال 1891 این واحد را الکترون نامید.

در سالهای پایانی سده نوزدهم میلادی بیشتر فیزیکدانان به این باور رسیدند که الکتریسته به دو صورت ظاهر می‌شود: یکی به صورت الکترون با جرم 9.109534X10-31 کیلو گرم و بار منفی 1.602X10-19 کولن و دیگری به صورت پروتون با جرم 1.672623X10-27 کیلو گرم و بار 1.602177X-19 اعتقاد بر این بود که اتمها (و در نتیجه مولکولها) از ترکیب الکترونها و پروتونها شکل می‌گیرد. در اوایل دهه 1930 معلوم شد که همه اتمها (بجز هیدروژن) از پروتونهای مثبت و نوترونهای خنثی و با جرم 1.675X10-27 و بدون بار الکتریکی مثبت تشکیل می‌شود. همچنینی کشف شد که الکترون مثبت (یا پوزیترون) نیز با جرمی برابر با جرم الکترون و باری برابر با بار الکترون ولی با علامت مثبت (دست کم به صورت لحظه‌ای) وجود دارد.



img/daneshnameh_up/c/c6/electron3.gif

ساختار اتم الکترونی

چنانچه گفته شد اتمها از ترکیب الکترونها و پروتونها شکل گرفته‌اند و هسته اتمها نیز از پروتونهای مثبت و نوترونهای خنثی تشکیل شده است. به این ترتیب ، اتم خنثی هسته‌ای با بار مثبت دارد که با الکترونهای (منفی) احاطه شده است. اندازه هسته در هر اتم از مرتبه حدود 10/1 اندازه‌ اتم است. بقیه حجم اتم را الکترونهای مداری در اشغال خود دارند.

انتقال الکترونها

در رسانای الکتریسته (که معمولا از جنس فلزند) ، مسیرهایی برای انتقال سریع الکترونها وجود دارد. یونها (اتمها و مولکولهای با بار الکتریکی مثبت یا منفی در محلولها) نیز می‌توانند رساننده الکتریسته باشند. الکتریسته می‌تواند در هوا یا گازهای دیگر نیز منتقل شود، این انتقال یا به صورت جرقه‌ای است که چشمه‌ای با ولتاژ زیاد (چند هزار ولت به ازای هر سانتیمتر فاصله) آن را در فشار جو بوجود می‌آورد. و یا در فشار کم نظیر آنچه در لامپهای نئونی روی می‌دهد به صورت تخلیه الکتریکی است.

گسیل الکترون

فلزات داغ الکترونهای فراوانی گسیل می‌کنند که آنها را می‌توان در خلأ خوب به صورت پرتوهای کاتدی شتاب داد. این پرتوهای تولید شده در لامپ کاتدی را می‌توان به کمک میدانهای الکتریکی و مغناطیسی فلوئورتاب کانونی کرد. لامپهایی که بر این اساس کار می‌کنند در میکروسکوپهای الکترونی ، صفحه‌های نمایشی رایانه‌ها و همچنین در تلویزیونها کاربرد دارد.

بر اثر کوششهایی که برای عبور جریان برق در خلا به عمل آمد ، یولیوس پلوکر در 1859 پرتوهای کاتدی را کشف کرد. موضوع از این قرار بود که دو الکترود در یک لوله شیشه‌ای وارد کردند و پس از مسدود کردن لوله ، هوای آنرا تقریبا بطور کامل بیرون کشیدند. وقتی یک ولتاژ زیاد بین دو الکترود برقرار گردید، از الکترود منفی که کاتد نامیده می‌شود پرتوهایی گسیل یافت. این پرتوها بار منفی دارند، بر خط راست سیر می‌کنند و بر دیواره مقابل کاتد موجب تلألو می‌شوند. لامپهای تصویری که در صفحه تلویزیون و صفحه نمایشهای کامپیوتری بکار می‌روند. لوله‌های پرتو کاتدی جدیدی هستند، در این لامپها پرتوها بر صفحه‌ای متمرکز می‌شوند. این صفحه با موادی پوشیده شده‌ که هنگام برخورد با تابش پرتوها درخشش ایجاد می‌کنند.

در اواخر سده نوزدهم ، پرتوهای کاتدی بطور وسیعی مورد بررسی قرار گرفت. آزمایشهای متعدد دانشمندان به این نتیجه انجامید که پرتوهای مذکور جریانی از ذرات بار دار منفی است که حرکتی سریع دارند. این ذرات همانطور که استونی پیشنهاد کرده بود الکترون نامیده شد. این الکترونها که از فلز کاتد ناشی می‌شوند همواره یکسانند و به جنس فلز بستگی ندارند. چون بارهای ناهمنام یکدیگر را جذب می کنند، جریان الکترونهایی که پرتوی کاتدی را بوجود می‌آورند هرگاه از میان دو صفحه با بارهای مخالف بگذرند به طرف صفحه‌ای که بار مثبت دارد کشیده می‌شوند. بنابراین پرتوهای کاتدی در یک میدان الکتریکی از مسیر عادی مستقیم خود منحرف می‌شوند. درجه این اختلاف به دو عامل بستگی دارد:


  1. انحراف بطور مستقیم با اندازه بار ذره تغییر می‌کند. ذره‌ای که بار بیشتری دارد بیشتر از ذره‌ای که بار کمتری دارد منحرف می‌شود.
  2. انحراف بطور معکوس با جرم ذره تغییر می‌کند. ذره‌ای با جرم بزرگتر کمتر از ذره‌ای با جرم کوچکتر منحرف می‌شود.

انواع الکترونها

الکترون آزاد

الکترونی که از اتم جدا شده و به آن بستگی ندارد. الکترونهای بیرونی‌ترین لایه‌های اتمهای فلزات بستگی کمتری نسبت به اتمهای خود دارند و با گرفتن انرژی کوچکی از این اتمها کنده می‌شوند و به شکل توده‌ای از ابر یا گاز ، شبکه‌های اتمی فلزات را در بر می‌گیرند. هنگامی که الکترونهای آزاد در میدان الکتریکی قرار گیرند، جریان الکتریکی بوجود می‌آید.

الکترون اوژه

الکترون اوژه نوعی الکترون آزاد است که از اتم یا یون گسیل می‌شود. الکترون اوژه از بازآرایی الکترونهای مقید از اتم یا یون اولیه سرچشمه می‌گیرد. این بازآیی از واکنش الکترون - الکترون که مولد نیروی دافعه است و می‌تواند بر نیروی جاذبه ناشی از برهمکنش الکترون - هسته فایق آید، صورت می‌گیرد. با آن همه بازآیی یاد شده تنها هنگامی می‌تواند رخ دهد که حداقل جای یک الکترون در تراز انرژی معین اتم یا یون اولیه خاصی باشد و در تراز با انرژی بیشتر از انرژی تهی جا حداقل دو الکترون وجود داشته باشد، یکی از الکترونهای تراز بالاتر به تراز دارای تهی جا سقوط می‌کند و الکترون دیگر به صورت الکترون آزاد از اتم خارج می‌شود.

الکترون ظرفیت یا الکترون والانس

هر یک از الکترونهای لایه خارجی اتم که در ایجاد پیوندهای شیمیایی شرکت می‌کنند.

الکترون رسانش

اتمهای هر فلزی با پیوندهای کووالانسی که راستای کاملا مشخص ندارند و میان چندین اتم پخش شده‌اند، به همدیگر مقید هستند. بنابراین الکترونهایی که قیدشان در ضعیفترین حد است (الکترون ظرفیت) می‌توانند در سراسر فلز حرکت کنند. این الکترونهای متحرک که الکترون رسانش نامیده می‌شود در خواص الکترونی و انتقال گرما در فلزها دخالت دارد.


  • مدل گاز آزاد فرمی: برای فلزهای ساده مانند (pb , TI , In , GA , Al , Ba , Sr, Ca , Mg , Be , Rb , Cs , Ka , Na , Li) سهم الکترون رسانش در رسانندگی گازی از فرمیونها بدون برهمکنش و با چشم پوشی از انرژی پتانسیل ناشی از بخش مرکزی یونها ، می‌توان محاسبه کرد. در این مدل ، انرژی مجاز الکترونهای رسانشی پیوسته‌اند و در انرژی فرمی εf با یک سطح کروی فردی روبرو هستیم.

  • خواص الکترونی: وقتی یک میدان الکتریکی خارجی به فلز اعمال می‌شود الکترونهای رسانش شروع به شتاب گرفتن می‌کنند. اما برخورد این الکترونها با ناخالصیها به فوتونها ، ناکاملیهای شبکه ، حرکتشان را کند می‌کند، این فرآیند منجر به حالتی مانا می‌شوند که در آن سرعت سوق برای الکترون رسانش عبارت است از: v = -eET/m

که در آن e بار الکترون ، E میدان الکتریکی ، T زمان میانگین بین برخورد (یا زمان واهلش) و m جرم الکترون است.


  • سرعت سوق الکترون: میانگین سرعتی که با آن الکترونها یا یونها ، بر اثر میدان الکتریکی در ماده‌ای رسانا یا نیم رسانا جابجا می‌شوند. نیم رساناهای خالص و آلاییده دارای حاملهای (الکترونها و حفره‌های رسانش) آزادی هستند که تحت تأثیر میدان الکتریکی ممکن است در داخل جسم جابجا شوند. تعداد الکترونها و حفره‌ها به جنس نیم رسانا و میزان و نوع آلایش و دمای آن بستگی دارد. اما در هر نیم رسانای قابل استفاده این تعداد معمولا بین 1022 تا 1026 الکترون یا حفره در هر متر مکعب است. در غیاب میدان الکتریکی این حاملها در جهت کاتوره‌ای در جسم حرکت می‌کنند و بنابراین جریان الکتریکی خالص بوجود نمی‌آورند.

    هر گاه میدان الکتریکی برقرار شود، بر حاملها نیروی الکتریکی وارد می‌شود و در جهت نیرو به آنها شتاب داده می‌شود، که این امر به ایجاد جریان الکتریکی می‌انجامد. اما حاملها با اتمها و نقص بلور ، مانند ناخالصیها و دررفتگیها نیز برهمکنش و برخورد نیز دارند و این برخوردها سبب میشوند سرعت الکترون کاتوره‌ای شود. به این ترتیب الکترونها و حفره‌ها در جهت نیروی الکتریکی دارای سرعت متوسطی هستند. و این سرعت متوسط یا سرعت سوق با توازن بین نیروی الکتریکی در زمان T فاصله زمانی میانگین بین برخوردها مشخص می‌شود.

    سرعت برخورد برابر است با Vp = eTE/m که در آن ، E میدان الکتریکی اعمال شده بر حسب ولتمتر را ، e بار الکترون و *m جرم مؤثر حامل است.

اسپین الکترون

اسپین یکی از ویژگیهای درونی ذرات است. اسپین خاصیتی است که به غیر صفر بودن تکانه زاویه‌ای ذره ساکن مربوط می‌شود، اینکه الکترونها دارای اسپین هستند از اهمیت خاصی برخوردار است. اسپین الکترون در شیمی و در جنبه‌هایی از رفتار ماده معمولی ، بویژه در پدیده‌های مغناطیسی نقش اساسی ایفا می‌کند. الکترون حامل اسپین 2/1 هسته و این بدان معنی است که برای الکترون ساکن اندازه گیری تکانه زاویهای نسبت به یک محور مفروض به یکی از دو نتیجه ممکن ħ/2 ± می‌انجامد ħ = h/2π ثابت کاهیده پلانک است.

اسپین الکترون دو پیامد نیزدیکی دارد: یکی اینکه الکترونها را به صورت آهنربایی میکروسکوپیکی در می‌آورد، که هم میدان مغناطیسی تولید می‌کنند و هم در برابر میدان مغناطیسی واکنش نشان می‌دهند. دیگر اینکه یک درجه آزادی داخلی نمی‌توانند حالت کوانتمی یکسان داشته باشند و این خاصیتی است به فرمیون بودن الکترونها مربوط می‌شود.

پراش الکترون

فیزیک کلاسیک ، الکترونها را ذراتی در نظر می‌گیرد با جرم و بار معین ، برهمکنش الکترون با میدانهای الکتریکی و مغناطیسی را می‌توان بر حسب حرکت ذره توضیح داد. آزمایشهای اولیه با لامپ پرتوی کاتودی که باریکه الکترون را فراهم می‌آورد، نشان داد که اجسام کوچکی که در لامپ قرار داده شوند روی پرده فسفری سایه واضح می‌اندازند. این آزمایش با تصویر کلاسیکی الکترون به صورت ذره کاملا سازگار است.

طول موج دوبروی الکترونی با انرژی 10000v یعنی الکترونی که با پتانسیل 1000v شتاب گرفته باشد، برابر 4X10 متر است. چون این مقدار بسیار کوچکتر از اندازه جسم است، اثر پراش بسیار کوچکتر از آن است که دیده شود. بلافاصله بعد از اینکه دوبروی اظهار نظر کرد که ماده باید خواص موجی از خود نشان دهد، والتر الساسر اعلام کرد که پراش الکترونها باید در سطح بلور قابل مشاهده باشد.

 


کلمات کلیدی: کوانتوم، هسته ای


نوشته شده توسط مهدی 85/1/16:: 2:44 عصر     |     () نظر

دید کلی

  • آیا نسخه دومی از شما ، یک رونوشت از خود شما وجود دارد که همین الان مشغول خواندن این مقاله باشد؟
  • آیا شخصی دیگر با اینکه شما نیست، روی سیاره‌ای به نام زمین با کوههای مه گرفته ، مزارع حاصل خیز و شهرهای بی در و پیکر در منظومه خورشیدی که هشت سیاره دیگر نیز دارد، زندگی می‌کند؟
  • آیا زندگی این شخص از هر لحاظ درست عین زندگی شما بوده است؟
  • اگر جوابتان مثبت است، شاید در این لحظه او تصمیم بگیرد این مقاله را تا همین جا رها کند، در حالی که شما به خواندن مقاله تا انتها ادامه خواهید داد.
img/daneshnameh_up/5/5e/origins.jpg

نظریه جهانهای موازی

اندیشه وجود یک خود دیگر نظیر آنچه که در بالا شرح آن رفت عجیب و غیر معقول به نظر می‌رسد، اما آنگونه که از قرائن بر می‌آید انگار مجبوریم آن را بپذیریم. زیرا مشاهدات نجومی از این اندیشه غیر مادی پشتیبانی می‌کنند. بنابر این پیش بینی ساده‌ترین و پر طرافدارترین الگوی کیهان شناسی که امروزه وجود دارد، این است که هر یک از ما یک جفت (همزاد) داریم که در کهکشانی که حدود 10280 متر دورتر از زمین قراردارد، زندگی می‌کنند.

این مسافت آنچنان زیاد است که بطور کامل خارج از هر گونه امکان بررسیهای نجومی است، اما این امر واقعیت وجود نسخه دوم ما را کمرنگ نمی‌کند. این مسافت بر اساس نظریه احتمالات مقدماتی برآورده شده و حتی فرضیات خیال پردازانه فیزیک نوین را نیز در بر نگرفته است.

فضای بیکران

اینکه فضا بیکران است و تقریبا بطور یکنواخت از ماده انباشته شده است، چیزی که مشاهدات هم آن را تأیید می‌کنند. در فضای بی کران حتی غیر محتمل‌ترین رویدادها نیز بالاخره در جایی ، اتفاق خواهند افتاد. در این فضا ، بینهایت سیاره مسکونی دیگر وجود دارد، که نه تنها یکی بلکه تعداد بیشماری از آنها مردمانی دارند که شکل ظاهری ، نام و خاطرات آنها دقیقا همان هاست که ما داریم. به ساکنانی که تمامی حالتهای ممکن ار گزینه‌های موجود در زندگی ما را تجربه می‌کنند. من و شما احتمالا هرگز خودهای دیگران را نخواهیم دید.

img/daneshnameh_up/d/db//Meghyasejahan.jpg

وسعت عالم

دورترین فاصله‌ای که ما قادر به دیدن آن هستیم، مسافتی است که نور در مدت 14 میلیارد سال که از انفجار بزرگ و آغاز انبساط عالم سپری شده است، طی می‌کند. دورترین اجرام مرئی هم اکنون حدود 4x1026 متر دور تر از زمین قرار دارند. این فاصله که عالم قابل مشاهده توسط ما را تعریف می‌کند. بطور مشابه ، عالمهای خودهای دیگر ما کراتی هستند به همین اندازه ، که مرکزشان روی سیاره محل سکونت آنهاست. چنین ترکیبی ساده‌ترین و سر راست‌ترین نمونه از جهانهای موازی است. هر جهان تنها بخشی کوچک از "جهان چند گانه" بزرگتر است.

جدال فیزیک و متا فیزیک

با این تعریف از جهان ممکن است شما تصور کنید که مفهوم جهان چند گانه تا ابد در محدوده قلمرو متا فیزیک باقی خواهد ماند. اما باید توجه داشت که مرز میان فیزیک و متا فیزیک را این مسأله که یک نظریه از لحاظ تجربه قابل آزمون است، یا خیر تعیین می‌کند نه این موضوع که فلان نظریه شامل اندیشه‌های غریب و ماهیتهای غیر قابل مشاهده است. مرزهای فیزیک به تدریج با گذر زمان فراتر رفته و اکنون مفاهیمی است بسیار انتزاعی تر نظیر زمین کروی ، میدان الکترو مغناطیسی نامرئی ، کند شدن گذر زمان در شرعتهای بالا ، برهمنهی کوانتومی ، فضای خمیده و سیاهچاله را در بر گرفته است. طی چند سال گذشته مفهوم جهان چند گانه نیز به این فهرست اضافه شده است.

پایه این اندیشه بر نظریاتی است که امتحان خود را به خوبی پس داده‌اند. نظریاتی همچون نسبیت و نظریه مکانیک کوانتومی ، افزون بر آن به دو قاعده اساسی علوم تجربی نیز وفادار است. که پیش بینی می‌کنند و می‌توانند آن را دستکاری نمایند.

انواع جهانهای موازی

دانشمندان تا کنون چهار نوع جهان موازی متفاوت را تشریح کرده‌اند. هم اکنون پرسش کلیدی وجود یا عدم جهان چند گانه نیست، بلکه سوال بر سر تعداد سطوحی است که چنین جهان می‌توان داشته باشد. یکی از نتایج متعدد مشاهدات کیهان شناسی اخیر این بوده است که جهانهای موازی دیگر مفهومی خیال پردازانه و انتزاعی صرف نیست. به نظر می‌رسد که اندازه فضا بینهایت است. اگر اینگونه باشد، بالاخره در جایی از این فضا هر چیزی که امکان پذیر باشد واقعیت خواهد یافت. اصلاً مهم نیست که امکان پذیری آن تا چه حد نامتحمل است.

فراسوی محدوده دید تلسکوپهای ما ، نواحی دیگری از فضا کاملا شبیه آنچه که پیرامون ماست وجود دارند، آن نواحی یکی از انواع جهانهای موازی هستند. دانشمندان حتی می‌توانند محاسبه کنند که این جهانها بطور متوسط چقدر با ما فاصله دارند و مهمتر از همه اینکه تمامی اینها فیزیک حقیقی و واقعی است. زمانی که کیهان شناسان با نظریاتی روبرو می‌شوند که از استحکام لازم برخوردار نیستند، نتیجه می‌گیرند که جهانهای دیگر می‌توانند ویژگیها و قوانین فیزیکی کاملا متفاوتی داشته باشند. وجود این جهانها بسیاری از جنبه‌های پرسش بنیادی در خصوص ماهیت زمان و قابل درک بودن جهان فیزیکی را پاسخ داد.



نوشته شده توسط مهدی 85/1/16:: 2:37 عصر     |     () نظر
<   <<   106   107   108   109   110   >>   >