تدبیر پیر را از دلیرى جوان دوست‏تر مى‏دارم . [ و در روایتى است ] از حاضر و آماده بودن جوان براى کارزار . [نهج البلاغه]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

تاریخچه

در قرنهای 11 تا 16 بشر از یک اتاقک تاریک (دوربین اولیه) بعنوان چیزی شبیه به دوربین استفاده می‌کرد. برای این منظور اتاق مکعب مستطیل کوچکی را که هرگز نوری به درون آن راه نمی‌یافت، آماده می‌کردند، در وجه جلوی آن سوراخی به قطر تقریبی یک میلیمتر ایجاد می‌کردند، بدین ترتیب تصاویر صحنه‌های خارج از اتاق را روی دیوار یا پرده در وجه مقابل سوراخ در داخل اتاق منعکس می‌نمودند. البته این عمل بیشتر برای نمایش و سرگرمی بود و هرگز کار عکاسی را انجام نمی‌داد.

img/daneshnameh_up/e/ee/CAG5E30H.JPG

نحوه کار دوربینهای اولیه

در سال 1568 دانیلو باربارو این اتاقک تاریک را با یک عدسی و یک دریچه قابل تغییر مجهز نمود. بدین وسیله می‌توانست تصاویر را واضحتر به درون اتاق منعکس کند. در سال 1802 توماس وج وود و همچنین همفری دیوی با استفاده از کاغذ مخصوص تصاویر غیر ثابتی بدست آوردند. این کاغذ آغشته به محلولی بود که هرگاه در برابر نور آفتاب قرار می‌گرفت، رنگ اصلی خود را از دست می‌داد و به کلی سیاه می‌شد. آنگاه چون بر روی این کاغذ تصویر یا جسمی را قرار می‌دادند، قسمتهایی که از تابش نور مصون مانده بود، به رنگ خود باقی می‌ماند و اما سایر قسمتهای کاغذ سیاه می‌شد. بدینگونه شبح نوری از اجسام بر روی آن کاغذ عکاسی می‌شد. با این روش تصویری بدست می‌آمد که آن نیز به مجرد نور دیدن ، رنگ خود را از دست می‌داد و کاغذ یکپارچه سیاه می‌شد.

سیر تحولی و رشد

در سال 1816 جوزف نییپس با یک جعبه جواهرات یک دوربین بسیار ابتدایی ساخت و آن را با ذره بین ، میکروسکوپ نوری مجهز نمود. با این دستگاه او می‌توانست فقط عکسهای منفی بردارد. سرانجام ویلیام تالبوت نخستین کسی بود که توانست عکسهای مثبت هم بردارد، عکسهایی که ثابت و دائمی هم باقی می‌ماندند. این رویداد در سال 1835 رخ داد. در سالهای بعد دوربینهای پیشرفته‌ای به بازار عرضه شده و می‌شود.

ساختمان دوربین عکاسی

img/daneshnameh_up/b/b0/CAM9G5EJ.JPG

دوربین عکاسی از یک اتاقک تاریک تشکیل شده که بر جدارهای آن یک عدسی محدب با فاصله کانونی ثابت قرار دارد. در جدار مقابل این عدسی فیلم و بین فیلم و عدسی دیافراگم وجود دارد. علاوه بر این دوربین به دستگاه تنظیم فاصله (مسافت یاب نوری)، شاتر یا بندان ، نورسنج (طیف سنج نوری) و منظره یاب مجهز است.

طرز کار دوربین عکاسی

در هنگام عکسبرداری عدسی دوربین را جلو و عقب می‌بریم تا آنکه در منظره یاب تصویر واضحی از جسم مورد نظر دیده شود. در این حالت تصویری حقیقی و معکوس می‌تواند روی فیلم تشکیل شود که با فشار دکمه دیافراگم باز می‌شود و نور در مدت مشخص به فیلم می‌رسد و تصویر جسم را روی آن بوجود می‌آورد.

img/daneshnameh_up/9/97/CAMERA.GIF
فیلم عکاسی

فیلم عکاسی به گونه خاصی تهیه شده است یعنی آنکه مواد شیمیایی خاصی در بر دارد که نور می‌تواند بر آنها اثر بگذارد و تصویر خارجی بر آن نقش ببندد. یکی از بهترین روشهای عکسبرداری (نورنگاری) ، آشکارسازی تابش بوسیله دانه‌های املاح هالوژنی نقره است. چرا که برای حساس کردن یک بلور هالوژنی نقره تنها چند فوتون کافی است. پس از آنکه یک فیلم نور دهی شد، مقدار تیرگی حاصل در یک خاص به عوامل زیر بستگی دارد:

  1. تابندگی به منظور نور دهی
  2. مدت زمان نور دهی
  3. شرایط ظهور فیلم

مکانیزم ضبط تصویر روی فیلم

انرژی لازم برای تبدیل برومور نقره یا یدور نقره به نقره عنصری از ماده شیمیایی مورد استفاده در فرآیند ظهور فراهم می‌شود. پیش از ظهور اطلاعات بصورت یک تصویر نهان به شکل دانه‌های حساس شده روی شیشه یا فیلم ذخیره شده است. از ظاهر کردن فیلم یک تصویر منفی( نگاتیو) بدست می‌آید. نگاتیو یعنی خلاف آنچه در صاحب تصویر دیده می‌شود. پس بنابراین قسمتهای روشن صاحب تصویر بر روی فیلم تیره می‌افتد و برعکس قسمتهای تیره آن بصورت روشن نقش می‌بندد.

چون دانه‌های املاح هالوژنی نقره به تنهایی فقط به نور آبی و نور فرا بنفش نزدیک حساسند، باید مواد رنگی یا رنگیزه‌هایی به آنها افزوده شود تا تابش بخشهای دیگر بیناب را جذب کنند و برای حساس کردن دانه‌ها ، مسیر فراهم آورند. فیلمهای فرو سرخ هم موجودند، ولی باید با مراقبت ویژه نگهداری شوند. چون به سبب حساسیت به گرما خیلی زود آسیب می‌بینند.

چاپ عکس

در مرحله چاپ فیلم ، عکس مثبت ( پوزیتیو) بدست می‌آید. پوزیتیو یعنی تصویری که درست مانند خود صاحب تصویر است. برای تهیه عکس مثبت ، فیلم را بر روی کاغذ مخصوصی قرار داده ، سپس از روی آن نوری را عبور می‌دهند. در نتیجه قسمتهای تیره فیلم بر روی کاغذ ، روشن و قسمتهای روشن آن نیز تیره چاپ می‌شود. چنین تصویری درست مطابق همان شخص یا چیزی است که قبلا با دوربین عکس آنها را بصورت نگاتیو برداشته بودیم.


کلمات کلیدی: اپتیک


نوشته شده توسط مهدی 85/1/28:: 4:16 عصر     |     () نظر
تصویر

مقدمه

تمام نگاری یک تکنیک انقلابی است که عکسبرداری سه بعدی (یعنی کامل) از یک جسم و یا یک صحنه را ممکن می‌کند. این تکنیک در سال 1948 توسط گابور ابداع شد (در آن زمان به منظور بهتر کردن توان تفکیک میکروسکوپ الکترونی پیشنهاد شد) و بصورت یک پیشنهاد عملی در آمد، اما قابلیت واقعی این تکنیک پس از اختراع لیزر نشان داده شد.
ایجاد هولوگرام

برای ایجاد هولوگرام به یک چشمه نور همدوس که در آن ، امواج همفاز هستند (نور لیزر) نیاز داریم. اساس تمام نگاری به این صورت است که باریکه لیزر بوسیله آینه که قسمتی از نور را عبور می‌دهد، به دو باریکه (بازتابیده و عبوری) تقسیم می‌شوند. باریکه بازتابیده مستقیما به صفحه حساس به نور برخورد می‌کند، در حالی که باریکه عبوری جسمی را که باید تمام نگاری شود روشن می‌کند. به این ترتیب قسمتی از نوری که از جسم پراکنده شده هم روی صفحه حساس (فیلم) می‌افتد. به علت همدوس بودن باریکه‌ها یک نقش تداخلی از ترکیب دو باریکه روی صفحه تشکیل می‌شود.

حالا اگر این فیلم ظاهر شود و تحت بزرگنمایی کافی بررسی شود، می‌توان این فریزهای تداخلی را مشاهده کرد. فاصله بین دو فریز تاریک متوالی معمولا حدود 1 میکرومتر است. این نقش تداخلی پیچیده است و هنگامی که صفحه را بوسیله چشم بررسی می‌کنیم به نظر نمی‌رسد که حامل تصویر مشابه با جسم اولیه باشد، اما این فریزهای تداخلی در واقع حامل ضبط کاملی از جسم اولیه است (هولوگرام انعکاسی یکی از انواع فراوان هولوگرامهاست).

مشاهده هولوگرام

برای مشاهده هولوگرام باید نور را تحت همان زاویه دسته پرتو اصلی که به هنگام عکسبرداری بر فیلم تابانده‌ایم، بر فیلم بتابانیم. در این صورت نمونه‌های تداخلی مضبوط بر فیلم نور را پراش داده چنان منعکس می‌کنند که جهت و شدت امواج تابشی اصلی ، که به هنگام عکسبرداری ایجاد شده است، مجددا بوجود آید. حال فرض کنید که صفحه ظاهر شده را دوباره به محلی که در معرض نور قرار داشت باز گردانیم و جسم تحت مطالعه را برداریم..

باریکه بازتابیده اکنون با فریزهای روی صفحه برهمکنش می‌کنند و دوباره در پشت صفحه یک باریکه پراشیده ایجاد می‌کند. بنابراین ناظری که به صفحه نگاه می‌کند جسم را در پشت صفحه می‌بیند، طوری که انگار هنوز هم جسم در آنجاست. هر یک از دو چشم ، هر نقطه مفروض را بواسطه یک نمونه تداخلی جداگانه مشاهده می‌کند. بدین ترتیب برای هر نقطه از تصویر ، ناظر یک تصویر مجازی سه بعدی را پشت صحفه هولوگرافی شناور است، می‌بیند. با تغییر شدت نور که در نتیجه تغییر زاویه مشاهده ، ایجاد می‌شود، چنین می‌نماید که شی در پشت هولوگرام واقعا وجود دارد.

تصویر

خصوصیات تمام نگاری

یکی از جالبترین خصوصیات تمام نگاری این است که جسم بازسازی شده رفتار سه بعدی نشان می‌دهد، بنابراین با حرکت دادن چشم از محل تماشا می‌توان طرف دیگر جسم را مشاهده کرد. توجه کنید که برای ضبط تمام نگار باید سه شرط اصلی را برآورد:.


  1. درجه همدوسی نور لیزر باید به اندازه کافی باشد تا فریزهای تداخلی در روی صفحه تشکیل شود.

  2. وضعیت نسبی جسم ، صفحه و باریکه لیزر نباید در هنگام تاباندن نور به صفحه که حدود چند ثانیه طول می‌کشد تغییر کند. در واقع تغییر محل نسبی باید کمتر از نصف طول موج لیزر باشد تا از در هم شدن نقش تداخلی جلوگیری کند.

  3. قدرت تفکیک صفحه عکاسی باید به اندازه کافی زیاد باشد تا بتواند فریزهای تداخلی را ضبط کند.

کاربرد

تصویر


تمام نگاری به عنوان یک تکنیک ضبط و بازسازی تصویر سه بعدی بیشترین موفقیت را تا کنون در کاربردهای هنری داشته است تا در کاربردهای علمی. اما بر اساس تمام نگاری از یک تکنیک تداخل سنجی تمام نگاشتی در کاربردهای علمی به عنوان وسیله‌ای برای ضبط و اندازه گیری واکنشها و ارتعاشات اجسام سه بعدی استفاده شده است. عکس دو بعدی ، نور را در همه جهات، با شدتی یکسان منعکس می‌سازد.

کلمات کلیدی: هسته ای، اپتیک


نوشته شده توسط مهدی 85/1/28:: 3:34 عصر     |     () نظر

مقدمه

در بلورها پراکندگی و فاصله اجزا ٬ دارای نظم هندسی ویژه‌ای است که معمولا" در تمام جهتها یکسان نیست. برخلاف بلورها در جامدهای بی شکل یا غیر بلورین پراکندگی و فاصله اجزای سازنده آنها در همه جهتها یکسان است. از اینرو بعضی از خواص فیزیکی جامدهای غیر بلورین ٬ مانند رسانایی گرمایی ٬ انتشار نور و رسانایی الکتریکی نیز در همه جهتها یکسان است. به این جامدهای غیر بلورین همسانگرد (ایزوتروپ) می‌گویند. چون خواص فیزیکی بیشتر جامدهای بلورین در جهتهای مختلف متفاوت است به آنها ناهمسانگرد می‌گویند. تنها بلورهایی که در دستگاه مکعبی متبلور می‌شوند مانند اجسام غیر بلورین عمل می‌کنند، چون در سه جهت فضایی دارای ابعاد مساوی هستند.

img/daneshnameh_up/1/1c/SrTiO3.jpg

کاربرد ناهمسانگردی

پدیده ناهمسانگردی سبب پیدایش خواصی در بلورها می‌شود که کاربردهای مختلف و مهمی در صنعت دارند. مثلا" اگر بلورهایی مانند کوارتز و یا تورمالین را از دو طرف بکشیم و یا فشار دهیم در جهت عمود بر فشار یا کشش دارای بار الکتریکی مخالف یکدیگر می‌شوند. اگر جهت این فشار یا کشش را عوض کنیم نوع بار الکتریکی تغییر می‌کند، به این پدیده پیزوالکتریک می‌گویند.
گرما در بعضی از بلورها الکتریسته ایجاد می‌کند و سبب می‌شود یک سوی آنها بار مثبت و سوی مقابل بار منفی بیابد. در نتیجه میان این دو سو اختلاف پتانسیل الکتریکی بوجود می‌آید. همچنین اگر به این بلور جریان الکتریکی متناوب وصل کنیم، بلورها به تناوب منبسط و منقبض می‌شوند و بر اثر ارتعاش ٬ صوت تولید می‌کنند. از این خاصیت برای تولید صوت ٬ ماورای صوت ٬ نوسانهای الکتریکی ٬ ساختن میکروفونهای بلوری و سوزن گرامافون استفاده می‌شود.

خواص نیم رسانایی

بعضی از بلورها مانند بلور عنصرهای ژرمانیم ٬ سیلیسیم و کربن خاصیت نیم رسانایی دارند و تا اندازه‌ای جریان الکتریکی را از خود عبور می‌دهند. اگر بلورهای نیم رسانا را گرما دهیم و یا در مسیر تابش نور قرار دهیم٬ مقاومت الکتریکی آنها کم می‌شود و الکتریسیته را بهتر عبور می‌دهد. نیم رساناها در صنایع الکترونیک و مخابرات بصورت دیود و ترانزیستور و قطعه‌های دیگر الکترونیکی بکار می‌روند. دیود یا یکسو کننده از دو قطعه بلور نیمه رسانا ساخته می‌شود و برای یکسو کردن جریانهای متناوب بکار می‌رود. ترانزیستور از سه قطعه بلور نیم رسانا تشکیل می‌شود و برای تقویت جریانهای ضعیف و یکسو کردن جریان متناوب بکار می‌رود. دیودها و ترانزیستورها از قسمتهای اصلی گیرنده‌ها و فرستنده‌های رادیو و تلویزیون هستند.

پدیده دو شکستی

بعضی از بلورها نور را به دو دسته پرتو تقسیم می‌کنند، بر اثر این پدیده در کانیهای شفاف ٬ مانند کربنات کلسیم شکست مضاعف ایجاد می‌شود. اگر نوشته‌ای را زیر کربنات کلسیم قرار دهیم بصورت دو نوشته دیده می‌شود.
بعضی از بلورها خاصیت جذب انتخابی دارند. مانند بلور تورمالین که پرتوهای نور را به دو دسته تقسیم می‌کند. یک دسته آنها را جذب می‌کند و دسته دیگر را از خود عبور می‌دهد. از این خاصیت برای ساختن فیلمها و عدسیهای قطبنده (پلاریزان) و برای کاهش شدت نور چراغهای اتومبیل استفاده می‌شود. عدسیهای قطبنده را در ساختن ابزارهای نوری مانند میکروسکوپهای قطبنده (پلاریزان) را از ورقه نازک پولاروید (ورقه شفاف و نازک نیترات سلولز) می‌پوشانند.

img/daneshnameh_up/8/89/TiO2.jpg
خواص ساختاری

بعضی از ویژگیهای بلورها به نوع و موقعیت پیوند بین مولکولهای آنها بستگی دارد. مثلا" هر چه پیوند اجزای یک بلور قویتر باشد نقطه ذوب آن بالاتر و سختی و مقاومت آن بیشتر است، مانند بلورهای الماس و گرافیت که از نظر ترکیب شیمیایی یکسان هستند و هر دو از کربن تشکیل شده‌اند، اما به دلیل تفاوت در پیوند شیمیایی میان اتمهای آنها سختی و مقاومت گرافیت کم ، اما سختی و مقاومت الماس بسیار زیاد است. بعضی از بلورها به سبب شکل پیوندهای داخلی ٬ در امتدادهای معینی به آسانی می‌شکنند، مانند بلور نمک طعام و بعضی به آسانی ورقه ورقه می‌شوند، مانندبلورهای میکا. از خاصیت سختی و مقاومت بلورها در ساختن انواع کاغذها و تیغه‌های سمباده و همچنین در ساعت سازی استفاده می‌کنند.


کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 85/1/28:: 2:30 صبح     |     () نظر


نگاه اجمالی

بلور شناسی ، علم مطالعه بلورهاست. با ارائه روشی برای توضیح چگونگی تعیین خواص فیزیکی ماده از روی سطح آن ، یعنی اصل تقارن بلور شناسی بصورت علمی مستقل در آمد. در دهه 1880 ، فیزیکدانان شواهد کافی گرد آورده بودند که پدیده‌های مختلفی از قبیل در شکستگی ، انبساط گرمایی ، وقف الکتریسیته و پیزو الکتریسیته را باید با استفاده از شکل بلور توضیح داد. برای مطالعه بلورها روشهای مختلفی وجود دارد که از مهمترین آنها بلور شناسی توسط اشعه ایکس و روشهای پراش الکترون.

سیر تحولی و رشد

مطالعه بلورها به دوران یونانیها و رومیها و مطالعات کوارتزهای گوناگون ، توسط ننوفراستو و پلینیو ، باز می‌گردد. در سده هفدهم نخستین تلاشها برای توصیف نظم ساختاری بلورها به عمل آمد. رابرت هوک اظهار داشت که مشکل کوارتز را با فرض این که کوارتز از آرایش تناوبی کره‌هایی تشکیل شده باشد، می‌توان توضیح داد. کریستیان هویگنس به منظور توصیف پدیده دو شکستی نور ، فرض کرد که کلسیت از آرایش تناوبی بیضیهای دوار تشکیل شده است. در سال 1784 ، ژنه ژوست هادی این فرض را مطح کرد که در بلورها مولکولها در گروههایی به شکل متوازی السطوح قرار گرفته‌اند. در آرایش فضایی این گروهها می‌تواند شکل بلوری ماکروسکوپیکی مشاهده شده را توضیح دهد.

در سال 1827 اوگوست کوشی معادله مربوط به کشسانی را بدست آورد و با این مطالعات و با استفاده از بیست و یک پارامتر توانست شرح دهد، چگونه جسم جامد تحت اثر کنش خارجی معلوم کرنش می‌کند. او به مطالعات خود ادامه داد و دریافت که برای توصیف بلورها با توجه به طبیعت شبکه‌ای‌ آنها به پارامترهای کمتری نیاز است. پنج سال بعد توانست ارنست نویمن این نتیجه‌ها را برابر مطالعه برهمکنش میان نورد ماده بر اساس مکانیک بکار برد. او فرض کرد که نور از ذرات خردی درست شده است. دانشجوی وی والدر سار فوگست که بعدها استاد دانشگاه کوتینگتون شد، نخستین کسی بود که تمام اطلاعات و دستاوردهای مربوط به ارتباط میان خواص فیزیکی و ساختار بلورها را در تناوبی گرد آورد.

بلورشناسی نوین

در سال 1912 ، بلورشناسی نوین متولد یافت. در آن سال ماکس و گروهش تصویری از پراش پرتوهای ایکس توسط بلور 3ns بدست آوردند. این آزمایشها سرشت موجی پرتوهای ایکس را ، که ویلهم کنراد رونتگن در اواخر سده نوزدهم کشف کرده بود و همچنین آرایش تناوبی خوشه‌های اتمها را در دوران بلور به اثبات رساند. ویلیام لارش براک و پدرش ، ویلیام هنری براگ در همین زمینه به پژوهش پرداختند و معادله مشهور زیر را بدست آوردند:


2sinӨ = nλ


که در آن d فاضله میان صفحه‌ای خانواده معینی از صفحه‌های بلوری ، n که مرتبه بازتاب نامیده می شود، عدد طبیعی λ طول موج ایکس مورد استفاده و Ө زاویه فرود و زاویه بازتاب باریکه است. این معادله می‌گوید که کدام زاویه برای بازتاب با طول موج و خانواده صفحه‌های خاص مناسب است، بازتابهایی که از لحاظ هندسی مجازند در طبیعت یافت می‌شوند.

بلور شناسی با پرتو ایکس

اگر نمونه‌ای از تک بلور را با استفاده از پرتوهای سفید ایکس ، پرتوهایی که نه یک طول موج ، بلکه گستره‌ای از طول موجها را در بردارد مورد مطالعه قرار دهیم. نقش خون لاوه بدست می‌آید تحت این شرایط در معادله 2dsinӨ = nλ می‌تواند مقادیری زیاد داشته باشد. اما Ө زاویه‌ای میان پرتو فرودی و صفحه ، برای یک خانواده صفحات خاص مقداری ثابت است. معمولا طول موجی مانند λ وجود دارد که در معادله براگ صدق می‌کنند و بازتاب رخ می‌دهد.

اگر نمونه‌ای را با فیلم عکاسی یا آشکارسازی جدید دیگری احاطه کنیم. در نقاط مختلف روی فیلم لکه‌هایی بدست می آوردیم که به پرتوهای بازتابیده از خانواده‌های مختلف صفحات بلور مربوط می‌شوند. با پردازش این داده‌ها به طریق ریاضی به آنچه نقش پراشی را بوجود می‌آورد می‌توان پی برد. در نتیجه ، ساختار میکروسکوپی بلور را معین می‌کند، یعنی می‌توان فهمید شبکه بلوری این ساختار چگونه است و چه اتمهایی در تلاقی شبکه‌ای قرار دارند.

روش پودری

برای مطالعه بلور شناسی توسط اشعه ایکس روشهای استاندارد دیگری هم وجود دارند که در این میان روش پودر از همه رایجتر است. در روش پودر بجای تک بعدی از نمونه‌ای استفاده می‌شود که بصورت بلورهای کوچکی به ابعاد 1µm یا کمتر خرده شده است. در این روش باریکه تک فام از پرتوهای ایکس به نمونه تابیده می‌شود. و در این حال برای هر خانواده خاصی از صفحات تعداد زیادی بلورک با سمتگیری مناسب پیدا می‌شوند که بازتاب براگ فرودی است. اما تند چتری که هر تکه از پارچه آن با دسته چتر زاویه‌ای یکسان می‌سازند. باریکه‌های بازتابیده روی مخروطی قرار می‌گیرند که گشودگی آن دو برابر گشودگی مخروط قبلی است. زیرا باریکه بازتابیده نسبت به باریکه اولیه زاویه می‌سازد و این در حالی است که زاویه بین صفحه و باریکی اولیه برابر Ө است.

اگر فیلم عکاسی را در راه باریکه خروجی قرار دهیم، از تلاقی مخروط اخیر با صفحه عکاسی یک دایره بدست می‌آید: فیلم عکاسی را معمولا به شکل نوار باریک دایره‌ای در می‌آوردند و آنرا روی صفحه‌ای که شامل باریکه خروجی است قرار می‌دهیم. فیلم را سوراخ می‌کنند تا باریکه بتواند به نمونه برسد. از تلاقی مخروطهای بازتابشی مربوط به صفحه‌های مختلف بلور فیلم نقش پراشی خطی بدست می‌آید.

بلور شناسی به روش پراش الکترون

در آغاز دهه 1990 روشهای جدیدی پیدا شدند که مشاهده مستقیم سطحهای بلورین را امکان می‌سازند. درک تغییرات ریخت شناسی که هنگام رویاندن بلور برای کاربردهای الکترونیک روی می‌دهند. با استفاده از پراش الکترون بجای پرتو ایکس و تحت زاویه‌ای کم از سطح بلورها حاصل شده است. با استفاده از میکروسکوپ تونلی روبشی برای نخستین بار ، امکان مشاهده مستقیم ساختار شبکه‌ای بلورها از طریق مشاهده اتم منفرد فراهم شد.



نوشته شده توسط مهدی 85/1/28:: 2:23 صبح     |     () نظر


  • ویژه هسته: یک هسته خاص با اعداد پروتونی (Z) و نوترونی (N) معین را گویند.
  • ایزوتوپها: ویژه هسته‌هایی با پروتونهای یکسان و نوترونهای مختلف را گویند. مثال: ایزوتوپ هیدروژن ؛ 21H و 31H می‌باشند.
  • ایزوتونها: ویژه هسته‌هایی با نوترون برابر و پروتون مختلف را گویند.
  • ایزوبارها: ویژه هسته‌هایی با عدد جرمی A برابر (A = Z + N) را می‌گویند.
  • ایزومر: ویژه هسته‌هایی در حالت بر انگیخته با نیم عمر قابل اندازه گیری را ایزومر می‌نامند.
تصویر

نوکلئون: ذرات تشکیل دهنده هسته (نوترون یا پروتون) نوکلئون نام دارند.

  • مزونها: ذراتی هستند با جرمی بین جرم الکترون و جرم پروتون. شناخته شده‌ترین مزونها عبارتند از: مزونهای پی که نقش مهمی در نیروهای هسته‌ای باز می‌کند و مزونهای مو که در پدیده‌های پرتو کیهانی مهم است.
  • پوزیترون: الکترون با بار مثبت به عبارتی ذره‌ای با جرمی برابر جرم الکترون و باری برابر بار الکترون با علامت مثبت.
  • فوتون: کوانتوم تابش الکترومغناطیسی که معمولاً بصورت نور اشعه ایکس یا اشعه گاما ظاهر می‌شود به عبارت دیگر کوچکترین ذرات سازنده نور فوتونها هستند.
  • اسپین: صرفنظر از انرژی مربوط به چرخش الکترون به دور هسته اتمی الکترون نیز انرژی اضافی دیگری دارد که مربوط به چرخش حول محور خود می‌باشد. علاوه بر الکترون ذراتی دیگر مثل پروتون ، نوترون و فونونها نیز به نوبه خود دارای اسپین می‌باشد.

  • آب سنگین: اصطلاحی که معمولا برای مولکول آب دارای دو اتم هیدروژن سنگین بکار می‌رود در این مولکول دو اتم دوتریوم بجای دو اتم هیدروژن جایگزین می‌شود (D2o). آب سنگین دارای خواص غیر عادی بوده و در راکتورهای هسته‌ای نقش ایفا می‌کنند.

  • بتاترون: یک شتاب دهنده چرخه‌ای است، این دستگاه شامل یک محفظه حلقوی بدون هوا است، که بین قطبهای یک الکترومغناطیس جای دارد. یک چشمه الکترونی نیز داخل آن محفظه قرار گرفته است.
img/daneshnameh_up/7/79/C3_quant_04.JPG
  • سوخت هسته‌ای پلوتونیوم: یک عنصر شیمیائی یا عدد اتمی 92 و جرم اتمی 239 و یک فلز سمی است، به سادگی در هوا آتش می‌گیرد. کاربرد عمده پلوتونیوم در راکتورهای هسته‌ای ، بمبهای هسته‌ای ، چشمه ذره آلفا و اشعه گاما در پزشکی است.

  • کوانتا (Cuonta): در سال 1901 فیزیکدان معاصر آلمانی ماکس پلانک پیشنهاد نمود که در انتقالات فیزیکی و تأثیرات متقابل اتمهای ماده ، انرژی بصورت مقادیر مجزا یا "بسته‌های" کوچک نشر یافته و یا جذب می‌شوند. در نتیجه مطابق این تئوری ، انرژی دارای مقادیر پیوسته‌ای نمی‌باشد. این قسمتهای کوچک نام کوانتوم بخود گرفت.
  • لباسهای بادی (Pneumatic suit ): لباسهای مخصوص که برای کار در هوای آلوده به مواد رادیو اکتیو (بخارهای گازها ، ذرات بسیار ریز) بکار می‌رود.
  • مهندسی هسته‌ای: شاخه‌ای از مهندسی مواد که انرژی هسته‌ای و نیز موارد استفاده از آن را برای احتیاجات کلی و دفاعی مطالعه و بررسی می‌کند.
  • نوترنیو (Neutrino):ذراتی هستند خنثی که تشخیص و حتی به تله انداختن آنها خیلی مشکل است. ضمن واپاشی بتای هسته‌های اتمی همراه الکترون یا پوزیترون گسیل می‌شود.
  • نیم عمر (Half Life): یکی از مهمترین کمیتهای مشخصه مواد رادیو اکتیو نیم عمر آنها می‌باشد و طبق تعریف مدت زمانی است که فعالیت چشمه به نصف مقدار اولیه می‌رسد.
img/daneshnameh_up/6/63/salemnuclear.jpg

راکتورهای هسته‌ای: وسیله‌ای که درآن واکنش شکافت زنجیری کنترل شده انجام می‌شود، راکتور هسته‌ای نام دارد. اورانیوم و پلوتونیوم به عنوان سوخت هسته‌ای بکار می‌رود.

  • پرتوهای کیهانی:تابشهای کیهانی عبارتست از ذرات مثبت تند (پروتونها) و شماری ذرات آلفا و هسته‌های دیگر ذرات اولیه. پرتوهای کیهانی دارای انرژی عظیم از مرتبه میلیارد الکترون ولت است، گاهی این انرژی به مقادیر حیرت آور از مرتبه 2110 ev می‌رسد. این پرتوها قادرند تا عمق اقیانوسها و زمین هم نفوذ کنند.
  • جرم سکون (Rest Mass): جرم یک ذره ای که سرعت آن صفر بوده و یا صفر می‌شود را جرم سکون گویند.
  • جرم بحرانی سوخت هسته‌ای (Critical Mass): جرم بحرانی برای انجام یک واکنش زنجیری شکست عبارتست از کمترین مقدار سوخت هسته‌ای بطوری که هر دوره نوترون باعث تولید یک دوره بعدی یا همان تعداد نوترون گردد، یعنی کاهش نوترون در سوخت هسته‌ای بطور کامل جبران شود.
  • تعریف جرم بحرانی: کمترین مقدار لازم جرم فیزیکی ماده سوختنی جهت سوختن را جرم بحرانی گویند.

کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/1/24:: 1:16 صبح     |     () نظر
<   <<   101   102   103   104   105   >>   >