در قرآن است خبر آنچه پیش از شما بود ، و خبر آنچه پس از شماست ، و حکم آنکه چگونه بایدتان زندگى نمود . [نهج البلاغه]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

‌نظریات اولیه

تا چندی پیش دو اصل کلی و مستقل از یکدیگر پایه دانش جدید را تشکیل می‌داد: یکی اصل بقای جرم بود و دیگری اصل بقای انرژی در نیمه دوم قرن هجدهم میلادی لاوازیه دانشمند فرانسوی پس از یک سلسله تجربیات دریافت که مقدار جرم مادی که در فعل و انفعالات شیمیائی دخالت دارند همواره ثابت می‌ماند و این مشخصه مواد را در قانون زیر به نام قانون بقای جرم خلاصه نمود.

بیان لاووازیه از قانون بقای جرم و انرژی

هیچ جرمی معدوم نمی‌شود و هیچ جرمی نیز از عدم بوجود نمی‌آید و یا به عبارت دیگر مقدار جرم مادی که در عالم وجود دارد همواره ثابت است اصل بقای انرژی می‌گوید؛ انرژی هر دستگاه معین مقدار ثابتی دارد، نمی‌توان انرژی را خلق کرد و نه آنرا از بین برد، فقط اقسام آن می‌توانند به یکدیگر تغییر شکل دهند.

img/daneshnameh_up/8/80/Tarazoo.jpg
هرگاه جسمی انرژی آزاد کند
همزمان جرم آن نیز کاهش می‌یابد.
نظریات مدرن

در اوایل قرن بیستم یعنی در سال 1905 نظریه نسبیت (Theory of Relativity) آلبرت انیشتین خدشه‌ای به دو اصل فوق الذکر وارد ساخت زیرا یکی از نظریات نسبیت این است که جرم و انرژی مانند بخار آب و آب که دو شکل مختلف از یک ماده هستند یک چیز واحد بوده و قابل تبدیل به یکدیگر می‌باشند. بنابراین مقدار جرم مادی را که در عالم وجود دارد نمی‌توان ثابت دانست، بلکه از تطبیق نظریه نسبیت با اصل بقای جرم و اصل بقای انرژی می‌توان قانون کلی تری نتیجه گرفت که مطابق آن:

" مجموع جرم مادی و مقدار انرژی که در عالم وجود دارد همواره ثابت است."به عقیده آلبرت انیشتین مقدار E که معرف انرژی است و از کلمه لاتین Energy اقتباس شده است، یعنی انرژی هم ارز با جرم m بوسیله رابطه زیر بیان می‌گردد E = m c2 که در آن E انرژی و m جرم و C سرعت نور در خلا می‌باشند.

داده‌های آماری

  • چنانچه در رابطه اخیر بجای حروف اعداد واقعی بکار بریم، عظمت و قدرت نیروی هسته‌ای آشکار می‌گردد. نیروی حاصله به این دلیل بزرگ است که سرعت سیر نور بسیار و برابر سیصد هزار کیلومتر در ثانیه است. بنابراین ضریب c2 بسیار رقم بزرگی می‌باشد و اگر آنرا در دستگاه C.G.S یعنی سانتیمتر - گرم - ثانیه حساب کنیم چنین می‌شود: c2 = 9X1020 ملاحظه می‌کنید که چه عدد غول پیکری است و ما آنرا به شکل طولانی خودش نمی‌نویسیم و خیلی راحتتر است، که فرم توانی آنرا به کار ببریم. اگر فرض کنیم که فقط یک گرم از جرم به انرژی تبدیل شود (m = 1 gr)، مقدار E یعنی انرژی (کار) برابر با: 9X1020
    اگر این انرژی تبدیل به انرژی الکتریکی نماییم مقدار آن برابر 25 گیگا وات در ساعت الکتریسته خواهد شد و این مقدار انرژی می‌تواند یک لامپها 30 واتی را برای مدت 100 سال روشن نگه دارد. بنابراین ناپدید شدن مقدار ناچیزی از جرم باعث ظهور مقدار زیادی انرژی است که درک قدرت آن دشوار است، برای درک بیشتر و بهتر مثال دیگری را ببینید:
  • چنانچه جرم را یک کیلوگرم انتخاب کنیم فرقی نمی‌کند که چه ماده‌ای در نظر گرفته شود، انرژی حاصل از تبدیل آن 25000 گیگا وات ساعت خواهد بود، اگر این مقدار انرژی را با سایر واحدها مقایسه کنیم درک آن آسانتر می‌شود. ناپدید شدن یک کیلوگرم ماده معادل سوختن 1600 میلیون لیتر بنزین و یا 3300 کیلو تن ذغال سنگ انرژی می‌دهد.

مفهوم فیزیکی قانون هم ارزی جرم و انرژی

باید بدانید که رابطه E = m c2 چگونگی تبدیل یک کیلو گرم آب به انرژی را بیان نمی‌کند بلکه فقط اصلی است که هم ارزی جرم و انرژی را بیان می‌کند، نه اینکه جزئیات نحوه تبدیل آنها را آشکار سازد. رابطه اخیر ایجاب می‌کند که برای انرژی نیز جرمی قائل شویم . انرژی گرمایی که ضمن احتراق بدست می‌آید دارای جرم است، ولی این جرم به اندازه‌ای کوچک است که حتی با دقیقترین ترازوها نمی‌توان آنرا سنجید مثلا چند نانوگرم (بیلیونوم گرم) در مورد احتراق 12 گرم ذغال. اگر بوسیله حرارت یک تن آب صفر درجه را به 100 درجه برسانیم یعنی به آن 100 میلیون کالری انرژی بدهیم جرم آن فقط 0.004 میلیگرم اضافه می‌شود.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/2/4:: 8:0 عصر     |     () نظر

دید کلی

مفاهیم ساختار اتمی و هسته‌ای این است که اتم مرکب از هسته و الکترونهایی ‏است که ‏آن را احاطه کرده‌اند و اینکه هسته از پروتون و نوترون ساخته شده است به این پرسش ‏‏اساسی می‌انجامد که:‏ آیا جرم یک اتم خنثی با مجموع جرمهای پروتونها ، نوترونها و الکترونهایی که آن اتم ‏خنثی را تشکیل ‏می‌دهند. برابر است یا نه؟‏ این پرسش را به دقت می‌توان پاسخ داد. زیرا جرم پروتون ، نوترون و الکترون و همچنین جرم‏های تقریبا ‏تمام اتمهای گوناگون معلوم هستند.

img/daneshnameh_up/d/da/enerjihambastegi.jpg

منشأ انرژی همبستگی هسته

در فیزیک یک اصل کلی است که می‌گوید: برای متلاشی کردن یک سیستم یا مجموعه پایدار ‏باید کار ‏انجام داد. مثلا اگر سیستمی از نوترونها و پروتونها ، که هسته اتم را ایجاد می‌کنند، پایدار باشد. برای از ‏هم سوا کردن آنها باید انرژی مصرف نمود.‏ جرم کلی یک هسته پایدار باید کمتر از مجموع جرمهای جداگانه نوترونها و پروتونهای تشکیل ‏دهنده آن ‏باشد. از طریق محاسبه و تجربه معین شده است که اختلافی بین مجموع جرم ‏نوکلئونهای هسته و جرم هسته ‏پایدار وجود دارد. این اختلاف جرم معادل انرژی هست که جهت ‏متلاشی کردن کامل هسته لازم است. این ‏انرژی موسوم به انرژی همبستگی اتم می‌باشد.‏

محاسبه انرژی همبستگی هسته

بررسی جرمهای اتمی شناخته شده نشان می‌دهد که برای هر نوع اتم ، جرم اتمی همواره ‏کمتر از ‏مجموع جرمهای ذرات تشکیل دهنده به حالت آزاد آنهاست. ساده‌ترین اتم که دست ‏کم شامل یک پروتون ، ‏یک نوترون و یک الکترون باشد دوتریم است. در این مورد جرمها عبارتند ‏از:‏

جرم سکون یک پروتون = amu ‏1.007276‏‏
جرم سکون یک نوترون = amu‏ 1.008665‏
جرم سکون یک الکترون = amu‏ 0.000549‏
جرم سکون ذرات تشکیل دهنده در حالت آزاد = amu‏ 2.016490‏
جرم سکون اتم دوتریوم = 2.014102‏ amu
تفاوت (‏Δm = 0.002388amu‏)‏


تفاوت جرم سکون ، ‏Δm‏ ، ممکن است کوچک به نظر آید، لیکن به علت ضریب C2 در ‏رابطه ‏E = mC2 این تفاوت جرم با تفاوت انرژی قابل ملاحظه‌ای مطابقت دارد. بنابرین ‏تفاوت جرم (‏Δm) با تفاوت انرژی (‏ΔE‏) با رابطه ‏ΔE = ΔmC2 به هم مربوط می‌شوند. ‏یک ضریب تبدیل مناسب ‏برای تبدیل جرم اتمی (برحسب واحد جرم اتمی) به انرژی (برحسب مگا الکترون ‏ولت) عبارت ‏است از (‏amu = 93.1Mev‏).‏

بنابرین اگر تشکیل یک اتم دوتریوم را به هنگام ترکیب یک پروتون و یک نوترون (و اتصال با ‏یک ‏الکترون) را در نظر بگیریم، در این فرآیند مقدار جرمی برابر با: ‏Mev = 1amu/931Mev x ‎‎0.002388 amu‏ 2.22 به هنگام ترکیب این سیستم از ذرات ترکیب شونده آن ، پیش از آن که به ‏صورت یک اتم ‏دوتریوم در آمده باشد، به اطراف تابیده است.‏ انرژی از دست رفته مورد نظر را که از محاسبه تفاوت در جرم سکون حاصل شده ، می‌توان با ‏نتیجه یک ‏آزمایش مستقیم مقایسه کرد. وقتی هیدروژن با نوترون بمباران می‌شود. یک نوترون ‏به صورت واکنش زیر ‏گیر می‌افتد:
10n + 11H → 21H + γ


در این واکنش هیچگونه اجزای ذره‌ای که انرژی جنبشی زیادی داشته باشند، ایجاد ‏نمی‌شود. بنابراین جرمی ‏برابر ‏amu‏‏ ‎0.002388‎‏ که تفاوت سبکتر شدن ‏‎21H‏ از ‏‏10n + 11H است، بوسیله اشعه گاما ربوده می‌شود. ‏انرژی این اشعه از طریق آزمایش معین و معلوم شده ‏که ‏MeV‏ 22.2 یعنی درست همان مقدار پیشگویی شده ‏است.‏

برهمکنش هسته دوتریوم با اشعه گاما

واکنش معکوس ، یعنی واکنشی که در آن دوتریم با اشعه گاما بمباران می‌شود، نیز ‏بررسی شده‌است:‏

  • اگر انرژی پرتوهای ‏اشعه‏ کمتر از ‏MeV ‏22.2 باشد، این واکنش صورت نمی‌گیرد. اما اگر ‏پرتوهای ‏V‏ با ‏انرژی ‏MeV ‏22.2 یا بیشتر بکار گرفته شوند، واکنش صورت می‌گیرد. یعنی ‏پروتون و نوترون از هم جدا ‏و آشکار پذیر می‌شوند.
21H + γ → 10n + 11H‎

به دنبال گیر اندازی یک نوترون بوسیله ‏‎11H‏ ، انرژی در یک ‏‏اشعه گاما آزاد می‌شود. این انرژی (‏MeV‏ 22.2) انرژی اتصال دوترون نامیده می‌شود. ‏این انرژی را ‏می‌توان انرژی‌ دانست که وقتی یک پروتون و یک نوترون برای ایجاد یک ‏هسته باهم ترکیب می‌شود، آزاد ‏می‌گردد. برای حصول واکنش معکوس ‏‏(وقتی‎21H ‎‏ با اشعه ایکس بمباران ‏می‌شود) انرژی باید جذب ‏شود.

  • بنابراین می‌توان چنین پنداشت که انرژی اتصال مقدار انرژی لازم برای شکستن ‏هسته به ذرات هسته‌ای ‏سازنده آن است. ‏

انرژی هسته‌ای

مفهوم انرژی هسته‌ای برای تمام مواردی که اجزایی ساده بوسیله نیرویی به هم ‏می‌پیوندند و یک سیستم ‏پیچیده بوجود می‌آورند، بکار می‌آید. مثلا زمین در مداری ‏به دور خورشید قرار گرفته و با جاذبه گرانشی ‏به آن متصل است و در این صورت برای ‏جدا شدن و گریز از خورشید باید مقداری انرژی جنبشی اضافی به ‏آن داده شود.

در یک اتم هیدروژن ‏eV‏ ‏13 لازم است تا الکترون از قید هسته‌ای که با جاذبه الکتریکی ‏به آن اتصال ‏یافته خلاص شود. برعکس ، وقتی یک هسته ‏عریان‎11H ‎‏ الکترونی را گیر ‏می‌اندازد و به یک اتم هیدروژن ‏خنثای پایدار معمولی مبدل می‌شود. سیستم مقداری انرژی برابر با ‏eV‏ 13 ‏بوسیله ‏تابش از دست می‌دهد و این درست انرژی فوتون گسیل یافته‌ای است که در این ‏فرآیند یعنی ، فرآیند ‏گیراندازی الکترون ، مشاهده می‌شود. اما فقط انرژیهای اتصال ‏هسته‌ای آنقدر بزرگ‌ هستند که تفاوت جرم ‏مربوط به آنها قابل اندازه‌گیری می‌شود.‏


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/2/4:: 8:0 عصر     |     () نظر



نیلز بور (1962-1885)، از بنیانگذاران فیزیک کوانتوم، در مورد چیزی که بنیان گذارده است، جمله ای دارد به این مضمون که اگر کسی بگوید فیزیک کوانتوم را فهمیده، پس چیزی نفهمیده است. من هم در اینجا می خواهم چیزی را برایتان توضیح دهم که قرار است نفهمید!

گام اول: تقسیم ماده

بیایید از یک رشته‌ی دراز ماکارونیِ پخته شروع کنیم. اگر این رشته‌ی ماکارونی را نصف کنیم، بعد نصف آن را هم نصف کنیم، بعد نصفِ نصف آن را هم نصف کنیم و... شاید آخر سر به چیزی برسیم ــ البته اگر چیزی بماند! ــ که به آن مولکولِ ماکارونی می‌توان گفت؛ یعنی کوچکترین جزئی که هنوز ماکارونی است. حال اگر تقسیم کردن را باز هم ادامه بدهیم، حاصل کار خواص ماکارونی را نخواهد داشت، بلکه ممکن است در اثر ادامه‌ی تقسیم، به مولکول‌های کربن یا هیدروژن یا... بربخوریم. این وسط، چیزی که به درد ما می خورد ــ یعنی به دردِ نفهمیدنِ کوانتوم! ــ این است که دست آخر، به اجزای گسسته ای به نام مولکول یا اتم می رسیم.

این پرسش از ساختار ماده که «آجرک ساختمانی ماده چیست؟»، پرسشی قدیمی و البته بنیادی است. ما به آن، به کمک فیزیک کلاسیک، چنین پاسخ گفته ایم: ساختار ماده، ذره ای و گسسته است؛ این یعنی نظریه‌ی مولکولی.

گام دوم: تقسیم انرژی

بیایید ایده‌ی تقیسم کردن را در مورد چیزهای عجیب تری به کار ببریم، یا فکر کنیم که می توان به کار برد یا نه. مثلاً در مورد صدا. البته منظورم این نیست که داخل یک قوطی جیغ بکشیم و در آن را ببندیم و سعی کنیم جیغ خود را نصف ـ نصف بیرون بدهیم. صوت یک موج مکانیکی است که می تواند در جامدات، مایعات و گازها منتشر شود. چشمه های صوت معمولاً سیستم های مرتعش هستند. ساده ترین این سیستم ها، تار مرتعش است ــ که در حنجره‌ی انسان هم از آن استفاده شده است. به‌راحتی(!) و بر اساس مکانیک کلاسیک می توان نشان داد که بسیاری از کمّیت های مربوط به یک تار کشیده‌ی مرتعش، از جمله فرکانس، انرژی، توان و... گسسته (کوانتیده) هستند. گسسته بودن در مکانیک موجی پدیده ای آشنا و طبیعی است (برای مطالعه‌ی بیشتر می توانید به فصل‌های 19 و 20 «فیزیک هالیدی» مراجعه کنید). امواج صوتی هم مثال دیگری از کمّیت های گسسته (کوانتیده) در فیزیک کلاسیک هستند. مفهوم موج در مکانیک کوانتومی و فیزیک مدرن جایگاه بسیار ویژه و مهمی دارد که جلوتر به آن می رسیم و یکی از مفاهیم کلیدی در مکانیک کوانتوم است.

پس گسسته بودن یک مفهوم کوانتومی نیست. این تصور که فیزیک کوانتومی مساوی است با گسسته شدن کمّیت های فیزیکی، همه‌ی مفهوم کوانتوم را در بر ندارد؛ کمّیت های گسسته در فیزیک کلاسیک هم وجود دارند. بنابراین، هنوز با ایده‌ی تقسیم کردن و سعی برای تقسیم کردن چیزها می‌توانیم لذت ببریم!

گام سوم: مولکول نور

خوب! تا اینجا داشتم سعی می کردم توضیح دهم که مکانیک کوانتومی چه چیزی نیست. حالا می رسیم به شروع ماجرا:

فرض کنید به جای رشته‌ی ماکارونی، بخواهیم یک باریکه‌ی نور را به طور مداوم تقسیم کنیم. آیا فکر می کنید که دست آخر به چیزی مثل «مولکول نور» (یا آنچه امروز فوتون می‌نامیم) برسیم؟ چشمه های نور معمولاً از جنس ماده هستند. یعنی تقریباً همه‌ی نورهایی که دور و بر ما هستند از ماده تابش می‌کنند. ماده هم که ساختار ذره ای ـ اتمی دارد. بنابراین، باید ببینیم اتم ها چگونه تابش می کنند یا می توانند تابش کنند؟

گام چهارم: تابش الکترون

در سال 1911، رادرفورد (947-1871) نشان داد که اتم ها، مثل میوه‌ها، دارای هسته‌ی مرکزی هستند. هسته بار مثبت دارد و الکترون‌ها به دور هسته می چرخند. اما الکترون های در حال چرخش، شتاب دارند و بر مبنای اصول الکترومغناطیس، «ذره‌ی بادارِ شتابدار باید تابش کند» و در نتیجه انرژی از دست بدهد و در یک مدار مارپیچی به سمت هسته سقوط کند. این سرنوشتی بود که مکانیک کلاسیک برای تمام الکترون ها /c1/پیش‌بینی و توصیه(!)

طیف تابشی اتم‌ها، بر خلاف فرضیات فیزیک کلاسیک گسسته است. به عبارت دیگر، نوارهایی روشن و تاریک در طیف تابشی دیده می‌شوند.

در این تصویر، طیف تابشی کربن را می‌بینید.

می کرد و اگر الکترون ها به این توصیه عمل می کردند، همه‌ی‌ مواد ــ از جمله ما انسان‌ها ــ باید از خود اشعه تابش می کردند (و همان‌طور که می‌دانید اشعه برای سلامتی بسیار خطرناک است)! ولی می‌بینیم از تابشی که باید با حرکت مارپیچی الکترون به دور هسته حاصل شود اثری نیست و طیف نوریِ تابش‌شده از اتم ها به جای اینکه در اثر حرکت مارپیچی و سقوط الکترون پیوسته باشد، یک طیف خطی گسسته است؛ مثل برچسب های رمزینه‌ای (barcode) که روی اجناس فروشگاه ها می زنند. یعنی یک اتم خاص، نه تنها در اثر تابش فرو نمی‌ریزد، بلکه نوری هم که از خود تابش می‌کند، رنگ ها ــ یا فرکانس های ــ گسسته و معینی دارد. گسسته بودن طیف تابشی اتم ها از جمله علامت سؤال های ناجور در مقابل فیزیک کلاسیک و فیزیکدانان دهه‌‌ی 1890 بود.

گام پنجم: فاجعه‌ی فرابنفش

برگردیم سر تقسیم کردن نور.

ماکسول (1879-1831) نور را به صورت یک موج الکترومغناطیس در نظر گرفته بود. از این رو، همه فکر می کردند نور یک پدیده‌ی موجی است و ایده‌ی «مولکولِ نور»، در اواخر قرن نوزدهم، یک لطیفه‌ی اینترنتی یا SMS کاملاً بامزه و خلاقانه محسوب می شد. به هر حال، دست سرنوشت یک علامت سؤال ناجور هم برای ماهیت موجی نور در آستین داشت که به «فاجعه‌ی فرابنفش» مشهور شد:

یک محفظه‌ی بسته و تخلیه‌شده را که روزنه‌ی کوچکی در دیواره‌ی آن وجود دارد، در کوره ای با دمای یکنواخت قرار دهید و آن‌قدر صبر کنید تا آنکه تمام اجزا به دمای یکسان (تعادل گرمایی) برسند.



در دمای به اندازه‌ی کافی بالا، نور مرئی از روزنه‌ی محفظه خارج می‌شود ــ مثل سرخ و سفید شدن آهن گداخته در آتش آهنگری.




نمودار انرژی تابشی در واحد حجم محفظه، برحسب رابطه رایلی- جینز در فیزیک کلاسیک و رابطه پیشنهادی پلانک


در تعادل گرمایی، این محفظه دارای انرژی تابشی‌ای است که آن را در تعادل تابشی ـ گرمایی با دیواره ها نگه می‌دارد. به چنین محفظه‌ای «جسم سیاه» می‌گوییم. یعنی اگر روزنه به اندازه‌ی کافی کوچک باشد و پرتو نوری وارد محفظه شود، گیر می‌افتد و نمی‌تواند بیرون بیاید.

فرض کنید میزان انرژی تابشی در واحد حجمِ محفظه (یا چگالی انرژی تابشی) در هر لحظه U باشد. سؤال: چه کسری از این انرژی تابشی که به شکل امواج نوری است، طول موجی بین 546 (طول موج نور زرد) تا 578 نانومتر (طول موج نور سبز) دارند. جوابِ فیزیک کلاسیک به این سؤال برای بعضی از طول موج‌ها بسیار بزرگ است! یعنی در یک محفظه‌ی روزنه دار که حتماً انرژی محدودی وجود دارد، مقدار انرژی در برخی طول موج‌ها به سمت بی نهایت می‌رود. این حالت برای طول موج‌های فرابنفش شدیدتر هم می‌شود. (نمودار شکل 4 را ببینید.)

گام ششم: رفتار موجی ـ ذره‌ای

در سال 1901 ماکس پلانک (Max Planck: 1947-1858) اولین گام را به سوی مولکول نور برداشت و با استفاده از ایده‌ی تقسیم نور، جواب جانانه‌ای به این سؤال داد. او فرض کرد که انرژی تابشی در هر بسامدِ ? ــ بخوانید نُو ــ به صورت مضرب صحیحی از ?h است که در آن h یک ثابت طبیعی ــ معروف به «ثابت پلانک» ــ است. یعنی فرض کرد که انرژی تابشی در بسامد ? از «بسته های کوچکی با انرژی ?h» تشکیل شده است. یعنی اینکه انرژی نورانی، «گسسته» و «بسته ـ بسته» است. البته گسسته بودن انرژی به‌تنهایی در فیزیک کلاسیک حرفِ ناجوری نبود‌ (همان‌طور که قبل‌تر در مورد امواج صوتی دیدیم)، بلکه آنچه گیج‌کننده بود و آشفتگی را بیشتر می‌کرد، ماهیتِ «موجی ـ ذره‌ای» نور بود. این تصور که چیزی ــ مثلاً همین نور ــ هم بتواند رفتاری مثل رفتار «موج» داشته باشد و هم رفتاری مثل «ذره»، به طرز تفکر جدیدی در علم محتاج بود.



ماکس پلانک، از بنیانگذاران فیزیک کوانتوم


ذره چیست؟ ذره عبارت است از جرم (یا انرژیِ) متمرکز با مکان و سرعتِ معلوم. موج چیست؟ موج یعنی انرژی گسترده‌شده با بسامد و طول موج. ذرات مختلف می‌توانند با هم برخورد کنند، اما امواج با هم برخورد نمی‌کنند، بلکه تداخل می‌کنند (شکل 6). نور قرار است هم موج باشد هم ذره! یعنی دو چیز کاملاً متفاوت.



تداخل امواج آب


گام هفتم!

و این داستان ادامه دارد ...

کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 85/2/3:: 4:5 عصر     |     () نظر

با کمک دو قطعه طلق که توسط لایه ی نازکی از هوا جدا شده اند ، می توان الگوهای تداخلی ساخت.

img/daneshnameh_up/b/b2/ov06.jpg


وقتی نور به دو سطح شفاف که فاصله ی کمی از هم دارند می تابد ، قسمتی از نور از هر یک از سطوح منعکس می شود. اگر فاصله ی بین دو سطح مضربی از نصف یا کل طول موج باشد به ترتیب تداخل سازنده یا ویرانگر اتفاق می افتد و یک الگوی تداخلی تشکیل می شود.

وسایل مورد نیاز

  • دو قطعه ورق طلق
  • کاغذ رسم تیره
  • یک قطعه ی پلاستیکی شفاف قرمز
  • نوار چسب
  • منبع نور ( چراغ مطالعه یا ... )


 

شرح آزمایش

سطوح طلق ها را با الکل و پارچه ی نرم تمیز کنید. سپس آن ها را محکم به هم فشار داده و برای اینکه در همین حالت ثابت باقی بمانند ، لبه های آن ها را با نوارچسب بچسبانید. روی یکی از سطوح را باکاغذ تیره بپوشانید تا الگوها ی تداخلی واضح تر دیده شوند.
سطوح طلقی را در برابر یک منبع نور قوی طوری در دست بگیرید که طرفی که کاغذ تیره قرار دارد مانند شکل در زیر باشد. الگوهای رنگی تداخل را مشاهده کنید. در صورت خم کردن یا فشردن سطوح ، الگوها تغییر خواهند کرد. توجه کنید که این الگوها شباهت زیادی به خطوط تراز در نقشه های توپوگرافی دارند. حالا قطعه ی پلاستیکی قرمز را بین منبع نور وسطوح قرار دهید. ملاحظه کنید که اینبار الگوها فقط قرمز وسیاه هستند.

چه اتفاقی در حال وقوع است؟

امواج نور از دوسطحی که توسط لایه ی نازک هوا از هم جدا شده اند ، منعکس می شوند. این امواج پس از بازتاب از سطوح با یکدیگر برخورد می کنند و می توانند اثر یکدیگر را تقویت کرده یا از بین ببرند. این تقویت شدن یا از بین رفتن تداخل سازنده و ویرانگر نامیده میشود. این اثر است که باعث بوجود آمدن الگوهای تداخلی می شود.
نور سفید از رنگ های مختلفی تشکیل شده که با هم مخلوط شده اند. وقتی امواج نور یک رنگ خاص به هم رسیده و یکدیگر را از بین می برند ، آن رنگ از رنگ های نور سفید حذف می شود. بطور مثال وقتی امواج نور آبی از بین می روند ، آنچه از نور سفید پس از حذف نور آبی باقی می ماند ، رنگ زرد ( مکمل رنگ آبی ) است. ضخامت لایه ی بین دوسطح تعیین می کند کدام رنگ از بین می رود. بطور مثال اگر فاصله ی بین دو سطح به اندازه ی نصف طول موج نور آبی( یا مضربی از آن ) باشد ، قله های امواج نور آبی که از سطح بالایی لایه ی هوا منعکس می شوند ، دره های امواج نور آبی منعکس شده از سطح پایین را از بین برده و موجب از بین رفتن نور آبی می شوند.
این چیزی است که اتفاق می افتد: تصور کنید که فاصله ی بین دو سطح نصف طول موج نور آبی است. وقتی یک موج به سطح بالایی لایه ی هوا برخورد می کند بخشی از آن منعکس و بخش دیگر به راه خود ادامه می دهد. در مقایسه با سطحی که از سطح بالایی لایه منعکس می شود ، بخشی که عبور کرده و از سطح پایین منعکس می شود ، به اندازه ی یک طول موج بیشتر در لایه ی هوا حرکت می کند ( نصف طول موج می رود و نصف طول موج بر می گردد ). به علاوه موجی که از سطح پایین منعکس می شود وارونه می شود. اثر خالص نهایی این است که قله و دره ی نور آبی منعکس شده از دو سطح ، با هم ترکیب شده و یکدیگر را از بین می برند. به دلیل اینکه طرح الگوهای تداخلی به فاصله ی بین دو سطح بستگی دارد چیزی که در عمل می بینید نقشه ی توپوگرافی فاصله ی بین دو سطح است.
پس از قرار دادن یک فیلتر قرمز جلوی منبع نور فقط فریزهای قرمز و سیاه پدیدار می شوند. در جایی که تداخل ویرانگر صورت می گیرد هیچ نور قرمزی وجود ندارد که به چشم شما برسد ، بنابراین شما سیاه می بینید. هر جا تداخل سازنده صورت گیرد شما قرمز خواهید دید.


کلمات کلیدی: سرگرمی های فیزیک


نوشته شده توسط مهدی 85/2/3:: 2:28 عصر     |     () نظر
ایزوتوپها با عدد جرمی آنها مشخص می‌شوند. حتی در حالت پایه بسیاری از ایزوتوپها ناپایدارند که ایزوتوپهای ناپایدار را رادیوایزوتوپ میگویند.

دیدکلی

رادیوایزوتوپها را به عنوان ایزوتوپهای ناپایدار شناختیم. حال این سوال پیش می‌آید که یک رادیوایزوتوپ چگونه می‌تواند به حالت پایدار برسد؟ چه چیزی باعث می‌شود که یک رادیوایزوتوپ پایدار یا رادیواکتیو شود؟ چگونه می‌توان رادیوایزوتوپها را تهیه کرد؟

تاریخچه

در سال 1968 هانری بکرل کشف کرد که اورانیوم ، رادیواکتیو است. اندکی بعد ، رادیوایزوتوپهای موجود در طبیعت از قبیل رادیوم ، پلونیوم کشف شدند. بسیاری از رادیوایزوتوپهای طبیعی دارای نیم عمر طولانی (بزرگتر از 1000 سال) هستند.

حالت پایداری رادیوایزوتوپ

رادیوایزوتوپها با گسیل تابش الکترومغناطیس یا ذرات باردار به سوی پایداری پیش می‌روند. سه فرآیندی که از طریق آنها یک رادیوایزوتوپ سعی می‌کند به پایداری برسد، واپاشی آلفا ، بتا و گاما نامیده می‌شوند.

علت وجود رادیوایزوتوپها

دو نوع نیروی قوی هسته‌ای و الکترومغناطیسی ، پایداری یک هسته را مشخص می‌کند. نیروهای قوی بین یک جفت نوکلئون (مثلا پروتون - پروتون یا نوترون - نوترون) عمل می‌کنند. آنها از نوع نیروی جاذبه هستند. نیروهای الکترومغناطیسی ، تنها بین پروتونها عمل کرده و رانشی هستند. عدم تعادل بین این دو نیرو منجر به ناپایداری و وجود رادیوایزوتوپ می‌شود. رادیوایزوتوپها می‌توانند مثل رادیوم ، پلوتونیوم ، اورانیوم بطور طبیعی وجود داشته باشند و یا به طریق مصنوعی ایجاد شوند. رادیوایزوتوپهای مصنوعی به یکی از 3 روش اساسی زیر تولید می‌شوند.

پرتودهی ایزوتوپهای پایدار در یک راکتور

راکتور هسته‌ای ، چشمه وسیعی از نوترونهای حرارتی است. این نوترونها به راحتی می‌توانند توسط ایزوتوپهای پایدار جذب شوند، که در این صورت ایزوتوپ حاصل دارای یک نوترون اضافی خواهد بود که عدد جرمی آن یک واحد افزایش می‌یابد. ایزوتوپ حاصل ممکن است که رادیواکتیو باشد، یعنی رادیوایزوتوپ داشته باشیم و ممکن است پایدار باشد. معادله می‌تواند به صورت زیر باشد.
AZX+10n→ A+1ZX+γ

که در رابطه فوق AZX ایزوتوپ اولیه با عدد جرمی A و عدد اتمی Z و A+1ZX رادیوایزوتوپ با عدد جرمی A+1 و عدد اتمی Z است که در این رادیوایزوتوپ γ گسیل می‌شود.

پرتودهی ایزوتوپهای پایدار در یک شتابدهنده یا سیکلوترون

شتابدهنده یا سیکلوترون چشمه تعداد زیادی از ذرات باردار پر انرژی در محدوده Meu (مگا الکترون ولت) است که داخل این دستگاه ذره باردار (مثل پروتون ، دوترون هلیوم) به ذره هدف (ایزوتوپ) می‌تابانند و رادیوایزوتوپ تشکیل می‌شود. به فرض برای یک پروتون و هسته sup>AZX> اینگونه می‌توان نوشت.
sup>AZX+11P→> Az+1Y+n

که در آن AZX هسته با عدد جرمی A و عدد اتمی Z و 11P پروتون و AZ+1Y رادیوایزوتوپ حاصله با عدد جرمی A و عدد اتمی Z+1 و n نیز نوترون می‌باشد.

شکافت ایزوتوپهای سنگینتر

از شکافت ایزوتوپهای سنگین تر می‌توان رادیوایزوتوپهای سبکتر تولید کرد. بلا فاصله پس از کشف رادیواکتیویته ، معلوم شد که رادیواکتیو طبیعی از قبیل 22688Ru (رادیوم 226) و 23296Th (توریوم 232) و 21084Po (پلونیوم 210) چشمه‌های با ارزش از ذرات α هستند. واکنشهای این ذرات α ، نوترون تولید می‌کردند. برای بسیاری از هسته‌های سنگین تر (A=200) جذب نوترون به تولید چندین ایزوتوپ با اعداد جرمی ، از مرتبه تقریبا نصف عدد جرمی ایزوتوپ هدف می‌انجامد.

واپاشی رادیوایزوتوپ

رادیوایزوتوپ را می‌توان از واپاشی رادیوایزوتوپ سنگین نیز تولید کرد که رادیوایزوتوپ حاصله را رادیوایزوتوپ دختر می‌گویند. در یک سری رادیواکتیو ، رادیوایزوتوپ دختر بطور پیوسته از واپاشی رادیوایزوتوپ مادر تولید و با آهنگ واپاشی خود از بین می‌رود. مثل سری اورانیوم یا سری توریوم که تولید رادیوایزوتوپهای دختر می‌کنند. برای مثال واپاشی روبیدیوم به صورت زیر است.
(پایدار) 81Rb→81Kr→81Kr


نوشته شده توسط مهدی 85/2/3:: 2:23 عصر     |     () نظر
<   <<   101   102   103   104   105   >>   >