مقدمه
آنچه که ما به عنوان ابر میشناسیم در واقع تجمع ذرات بخار آب موجود در جو به دور هستههای تراکم و سرد شدن آنهاست. از آنجا که با مشاهده نوع و نحوه تغییرات ابرها میتوان اطلاعات قابل ملاحظهای درباره وضعیت جو بدست آورد، مطالعه و بررسی ابرها دارای اهمیت ویژهای است. عامل اصلی تشکیل ابر صعود هوای گرم و مرطوب به سطح فوقانی جو و سرد شدن آن است و در صعود به ارتفاعات بالاتر جو تحت تأثیر فشار کم آن سطوح قرار گرفته و همگام با انبساط سرد میشود.
عومل موثر در صعود هوا
این تربولانس در اثر عبور هوا بر روی ناهمواریهای سطح زمین ، در اثر برش باد و تغییرات بردار باد در جهت قائم نیز ایجاد میشود. بخشی از هوا که با مرز ساکن در تماس است خود نیز در حال سکون میباشد، اما با بالا رفتن هوا بر سرعت آن نیز افزوده میشود. با افزایش سرعت هوا به بیش از یک مقدار مشخص حرکات تربولانس ایجاد میشود. این تربولانس بیشتر باعث تشکیل ابرهای پوششی میشود.
این تربولانس نتیجه تابش خورشید بر خشکیها و گرم شدن سطح زمین است. اما گاهی این پدیده به علت عبور تودههای سرد بر روی زمین گرم یا دریای گرمتر نیز بوجود میآید. این حرکت بیشتر در ایجاد ابرهای جوششی اهمیت دارد.
هوای نزدیک سطح زمین و سطح فوقانی در صورت برخورد با موانع طبیعی مثل کوهستان وادار به صعود میشوند.
بیشتر در اثر واگرایی سطوح فوقانی تروپوسفر بوجود میآید. در اثر جروج هوا در سطح فوقانی جرم ستون هوا در سطح زمین کاهش یافته و در نتیجه فشار ستون هوا در سطح زمین کاهش مییابد. این واگرایی در سطوح بالا و همگرایی در سطوح پایین باعث صعود ملایم و گسترده هوا در عمق زیادی از تروپوسفر میشود. در صورت وجود رطوبت کافی توسعه ابر بصورت گسترده روی خواهد داد. صعود ملایم و گسترده روی خواهد داد. صعود ملایم و گسترده بیشتر در نزدیکی منطقه جبهه و مرکز کم فشار رخ میدهد.
ابرها از قطرات ریز آب و یا از بلورهای یخ و گاهی اوقات نیز از مخلوطی از این دو میباشند. معمولا ابر هنگامی تشکیل میشود که هوا به بالا رانده شود. چون هوای موجود در لایههای پایینتر نسبت به هوای موجود در بالا گرمتر بوده و از تراکم کمتری نیز برخوردار میباشد. لذا به بالا میرود (برخی اوقات نیز علت این رانش ، حرکت هوا به سمت بالای کوه و قله آن است). هنگامی که هوا به سمت بالا میرود، سرد میشود و سرانجام به سطحی میرسد که به سطح انقباض معروف است. در این هنگام هوا اشباع و بخار آب موجود در آن منقبض و متراکم میشود و به قطرات آب تبدیل میگردد.
اما اگر ابرها دوباره به سمت زمین میآمدند، هوا به تدریج گرم میشد و همینطور که آب پایین میآمد از سطح انقاض عبور میکرد و از آن خارج میشد، در نتیجه قطرات آب دوباره به حالت بخار در میآمدند و بدین ترتیب ابر از بین میرفت. در برخی مواقع ابر در لایههای بسیار پایین نیز وجود دارد و این همان چیزی است که به مه معروف است. مه در واقع ابری است که در سطح زمین تشکیل میشود. در صورتی که سطح انقباض در ارتفاع بسیار پایین قرار داشته باشد، باعث میشود که هوا در نزدیکی سطح ومین اشباع و بخار آب موجود در آن منقبض شود و تبدیل به مه یا ابر نزدیک به زمین گردد.
در نامگذاری ابرها از کلمات لاتین با ریشه یونانی استفاده میشود. این نامگذاری با توجه به نوع و شکل و همچنین خصوصیات ابر انجام میگیرد. در جدول زیر کلماتی که در نامگذاری ابرها بیشتر مورد استفاده قرار میگیرد را با معانی آورده شده:
|
سایر کلماتی که بکار میبرند:
|
دستههای ابر
ابرها دارای ده دسته اصلی هستند که هر کدام از این ده دسته اصلی خود به یک یا چند دسته دیگر تقسیم میشوند. دستههای اصلی عبارتند از:
ابرها را از چند دیدگاه مختلف طبقه بندی میکنند:
تفاوتی که ما در شکل ابرها میبینیم، نتیجه تفاوت در شدت و سرعت عمل فرآیند تراکمی است که منجر به تشکیل ابر میشود. از این منظر ابرها را به دو گروه تقسیم میکنند:
نزدیک شدن جبهه گرم با ظهور ابرهای سیروس و سیرو استراتوس که پیوسته ضخیم میشوند مشخص میگردد. در صورت وجود توربولانس امکان تشکیل سیرو کومولوس نیز وجود دارد. با نزدیکتر شدن جبهه گرم و پایین آمدن هوای گرم ابرهای میانی نظیر آلتو استراتوس و آلتو کومولوس نیز بوجود میآیند. گسترش این ابرها امکان بارش را نیز زیاد میکند.
از بین رفتن ابر
با توقف تمام فرآیندهای تشکیل ابر توسعه طبیعی آن نیز تضعیف میگردد. همچنین عواملی مانند گرم شدن هوا و بارش و اختلاط با هوای خشک اطراف باعث کاهش قطرات آب و کرستالهای یخی در ابر شده و بدین تدتیب ابر از بین میرود. عوامل مهم در از بین رفتن ابر:
کلمات کلیدی: کوانتوم، هواشناسی و اختر فیزیک
نظریه جهانهای موازی
اندیشه وجود یک خود دیگر نظیر آنچه که در بالا شرح آن رفت عجیب و غیر معقول به نظر میرسد، اما آنگونه که از قرائن بر میآید انگار مجبوریم آن را بپذیریم. زیرا مشاهدات نجومی از این اندیشه غیر مادی پشتیبانی میکنند. بنابر این پیش بینی سادهترین و پر طرافدارترین الگوی کیهان شناسی که امروزه وجود دارد، این است که هر یک از ما یک جفت (همزاد) داریم که در کهکشانی که حدود 10280 متر دورتر از زمین قراردارد، زندگی میکنند.
این مسافت آنچنان زیاد است که بطور کامل خارج از هر گونه امکان بررسیهای نجومی است، اما این امر واقعیت وجود نسخه دوم ما را کمرنگ نمیکند. این مسافت بر اساس نظریه احتمالات مقدماتی برآورده شده و حتی فرضیات خیال پردازانه فیزیک نوین را نیز در بر نگرفته است.
اینکه فضا بیکران است و تقریبا بطور یکنواخت از ماده انباشته شده است، چیزی که مشاهدات هم آن را تأیید میکنند. در فضای بی کران حتی غیر محتملترین رویدادها نیز بالاخره در جایی ، اتفاق خواهند افتاد. در این فضا ، بینهایت سیاره مسکونی دیگر وجود دارد، که نه تنها یکی بلکه تعداد بیشماری از آنها مردمانی دارند که شکل ظاهری ، نام و خاطرات آنها دقیقا همان هاست که ما داریم. به ساکنانی که تمامی حالتهای ممکن ار گزینههای موجود در زندگی ما را تجربه میکنند. من و شما احتمالا هرگز خودهای دیگران را نخواهیم دید.
دورترین فاصلهای که ما قادر به دیدن آن هستیم، مسافتی است که نور در مدت 14 میلیارد سال که از انفجار بزرگ و آغاز انبساط عالم سپری شده است، طی میکند. دورترین اجرام مرئی هم اکنون حدود 4x1026 متر دور تر از زمین قرار دارند. این فاصله که عالم قابل مشاهده توسط ما را تعریف میکند. بطور مشابه ، عالمهای خودهای دیگر ما کراتی هستند به همین اندازه ، که مرکزشان روی سیاره محل سکونت آنهاست. چنین ترکیبی سادهترین و سر راستترین نمونه از جهانهای موازی است. هر جهان تنها بخشی کوچک از "جهان چند گانه" بزرگتر است.
با این تعریف از جهان ممکن است شما تصور کنید که مفهوم جهان چند گانه تا ابد در محدوده قلمرو متا فیزیک باقی خواهد ماند. اما باید توجه داشت که مرز میان فیزیک و متا فیزیک را این مسأله که یک نظریه از لحاظ تجربه قابل آزمون است، یا خیر تعیین میکند نه این موضوع که فلان نظریه شامل اندیشههای غریب و ماهیتهای غیر قابل مشاهده است. مرزهای فیزیک به تدریج با گذر زمان فراتر رفته و اکنون مفاهیمی است بسیار انتزاعی تر نظیر زمین کروی ، میدان الکترو مغناطیسی نامرئی ، کند شدن گذر زمان در شرعتهای بالا ، برهمنهی کوانتومی ، فضای خمیده و سیاهچاله را در بر گرفته است. طی چند سال گذشته مفهوم جهان چند گانه نیز به این فهرست اضافه شده است.
پایه این اندیشه بر نظریاتی است که امتحان خود را به خوبی پس دادهاند. نظریاتی همچون نسبیت و نظریه مکانیک کوانتومی ، افزون بر آن به دو قاعده اساسی علوم تجربی نیز وفادار است. که پیش بینی میکنند و میتوانند آن را دستکاری نمایند.
دانشمندان تا کنون چهار نوع جهان موازی متفاوت را تشریح کردهاند. هم اکنون پرسش کلیدی وجود یا عدم جهان چند گانه نیست، بلکه سوال بر سر تعداد سطوحی است که چنین جهان میتوان داشته باشد. یکی از نتایج متعدد مشاهدات کیهان شناسی اخیر این بوده است که جهانهای موازی دیگر مفهومی خیال پردازانه و انتزاعی صرف نیست. به نظر میرسد که اندازه فضا بینهایت است. اگر اینگونه باشد، بالاخره در جایی از این فضا هر چیزی که امکان پذیر باشد واقعیت خواهد یافت. اصلاً مهم نیست که امکان پذیری آن تا چه حد نامتحمل است.
فراسوی محدوده دید تلسکوپهای ما ، نواحی دیگری از فضا کاملا شبیه آنچه که پیرامون ماست وجود دارند، آن نواحی یکی از انواع جهانهای موازی هستند. دانشمندان حتی میتوانند محاسبه کنند که این جهانها بطور متوسط چقدر با ما فاصله دارند و مهمتر از همه اینکه تمامی اینها فیزیک حقیقی و واقعی است. زمانی که کیهان شناسان با نظریاتی روبرو میشوند که از استحکام لازم برخوردار نیستند، نتیجه میگیرند که جهانهای دیگر میتوانند ویژگیها و قوانین فیزیکی کاملا متفاوتی داشته باشند. وجود این جهانها بسیاری از جنبههای پرسش بنیادی در خصوص ماهیت زمان و قابل درک بودن جهان فیزیکی را پاسخ داد.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
ستارگان نوترونی جوان بسرعت میچرخند و 2 پرتو نیرومند موج رادیویی که مرتباً در آسمان سیر میکنند منتشر مینمایند. اگر پرتویی از کنار زمین بگذرد ممکن است بصورت تپشی منظم دیده شود. چنان ستارگانی پالسار نامیده میشوند. |
مقدمه
هنگامی که ستاره پر جرمی به شکل ابر نواختر منفجر میشود، شاید هستهاش سالم بماند. اگر هسته بین 1.4 تا 3 جرم خورشیدی باشد، جاذبه آن را فراتر از مرحله کوتوله سفید متراکم میکند تا اینکه پروتونها و الکترونها برای تشکیل نوترونها به یکدیگر فشرده شوند. این نوع شیء سماوی ستاره نوترونی نامیده میشود. وقتی که قطر ستارهای 10 کیلومتر (6مایل) باشد، انقباضش متوقف میشود. برخی از ستارگان نوترونی در زمین به شکل تپنده شناسایی میشوند که با چرخش خود ، 2 نوع اشعه منتشر میکنند.
برای اینکه تصور بهتری از یک ستارۀ نوترونی در ذهنتان بوجود بیاید، میتوانید فرض کنید که تمام جرم خورشید در مکانی به وسعت یک شهر جا داده شده است. یعنی میتوان گفت یک قاشق از ستارۀ نوترونی یک میلیارد تن جرم دارد. این ستارگان هنگام انفجار برخی از ابرنواخترها بوجود میآیند. پس از انفجار یک ابرنواختر ممکن است بخاطر فشار بسیار زیاد حاصل از رمبش مواد پخش شده ساختار اتمی همه عناصر شیمیایی شکسته شود و تنها اجزای بنیادی بر جای بمانند.
اکثر دانشمندان عقیده دارند که جاذبه و فشار بسیار زیاد باعث فشرده شدن پروتونها و الکترونها به درون یکدیگر میشوند که خود سبب بوجود آمدن تودههای متراکم نوترونی خواهد شد. عدۀ کمی نیز معتقدند که فشردگی پروتونها و الکترونها بسیار بیش از اینهاست و این باعث میشود که تنها کوارکها باقی بمانند و این ستاره کوارکی متشکل از کوارکهای بالا و پایین (Up & down quarks) و نوع دیگری از کوارک که از بقیه سنگینتر است خواهد بود، که این کوارک تا کنون در هیچ مادهای کشف نشده است.
تحقیقات انجام یافته
از آنجا که اطلاعات در مورد ستارگان نوترونی اندک است، در سالهای اخیر تحقیقات زیادی بر روی این دسته از ستارگان انجام شده است. در اواخر سال 2002 میلادی ، یک تیم تحقیقاتی وابسته به ناسا به سرپرستی خانم J. Cotto مطالعاتی را در مورد یک ستارۀ نوترونی به همراه یک ستارۀ همدم به نام 0748676 EXO انجام داد. این گروه برای مطالعه این ستارۀ دوتایی که در فاصله 30000 سال نوری از زمین قرار دارد، از یک ماهوارۀ مجهز به اشعه ایکس بهره برد. (این ماهواره متعلق به آزانس فضایی اروپاست و XMMX- ray Multi Mirror نیوتن نام دارد)
هدف این تحقیق تعیین ساختار ستارۀ نوترونی با استفاده از تأثیرات جاذبه زیاد ستاره بر روی نور بود. با توجه به نظریه نسبیت عام نوری که از یک میدان جاذبه زیاد عبور کند، مقداری از انرژی خود را از دست میدهد. این کاهش انرژی به صورت افزایش طول موج نور نمود پیدا میکنند. به این پدیده انتقال به قرمز میگویند.
این گروه برای اولین بار انتقال به قرمز نور گذرنده از اتمسفر بسیار بسیار نازک یک ستارۀ نوترونی را اندازه گیری کردند. جاذبه عظیم ستارۀ نوترونی باعث انتقال به قرمز نور میشود، که میزان آن به مقدار جرم ستاره و شعاع آن بستگی دارد. تعیین مقادیر جرم و شعاع ستاره میتواند محققان را در یافتن فشار درونی ستاره یاری کند. با آگاهی از فشار درونی ستاره منجمان میتوانند حدس بزنند که داخل ستارۀ نوترونی فقط متشکل از نوترونهاست یا ذرات ناشناخته دیگر را نیز شامل میشود. این گروه تحقیقاتی پس از انجام مطالعات و آزمایشات خود دریافتند که این ستاره تنها باید از نوترون تشکیل شده باشد و در حقیقت طبق مدلهای کوارکی ذرۀ دیگری جز نوترون در آن وجود ندارد.
در حین این مطالعه و برای بررسی تغییرات طیف پرتوهای ایکس یک منبع پرقدرت اشعه ایکس لازم بود. انفجارهای هستهای (Thermonuclear Blasts) که بر اثر جذب ستارۀ همدم توسط ستارۀ نوترونی ایجاد میشود. همان منبع مورد نیاز برای تولید اشعه ایکس بود. (ستارۀ نوترونی به سبب جرم زیاد و به طبع آن جاذبه قوی مواد ستارۀ همدم را بسوی خود جذب میکرد.) طیف پرتوهای X تولید شده پس از عبور از جو بسیار کم ستارۀ نوترونی که از اتمهای آهن فوق یونیزه شده تشکیل شده بود توسط ماهوارۀ XMM - نیوتن مورد بررسی قرار گرفتند.
نکته قابل توجه این است که در آزمایشهای قبلی که توسط گروه دیگری انجام شده بود تحقیقات بر روی ستارهای متمرکز بود که میدان مغناطیسی بزرگی داشت و چون میدان مغناطیسی نیز بر روی طیف نور تأثیر گذار است، تشخیص اثر نیروی جاذبه ستاره بر روی طیف نور بطور دقیق امکان پذیر نبود. ولی ستارۀ مورد نظر در پروژۀ بعدی دارای میدان مغناطیسی ضعیفی بود که اثر آن از اثر نیروی جاذبه قابل تشخیص بود.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
|
نگاه اجمالی
در طول زندگی انسان ، ستارگان بیشمار راه شیری ، عملا بیتغییر به نظر میرسند. گاهی ، یک نواختر ، ناگهان ظاهر آشنای یک صورت فلکی را به مدت چند هفته عوض میکند و دوباره کمنورتر میشود. منظره زیبایی که درخشش یک ابرنواختر در آسمان پدید میآورد، بسیار نادر است. در سال 1054 میلادی (433 شمسی) مردم شاهد چنین منظرهای بودند. یک ابر اختر در صورت فلکی ثور منفجر شد که سحابی خرچنگ ، بقایای آن است. ستارگان متغیر با نور ثابتی نمیدرخشند.
تحول یک ستاره
ستارگان نیز نهایتا تغییر میکنند و هیچ کدام تا ابد پایدار نمیمانند. آتش زغال ، با خاکستر شدن آخرین شراره خاموش میشود. ستاره هنگامی میمیرد که انبار عظیم سوخت هستهای آن به پایان رسد. حتی امروزه نیز ستارگان پیری را میبینیم که تاریک میشوند. در حالی که ستارگان دیگر تولد مییابند تا جایگزین آنها شوند.
ستارگان بسیار جوان ، هنوز در میان گازهایی پنهان هستند که از آن شکل میگیرند. درون سحابی جبار ، نخستین سوسوی نور ستارگان نوزاد دیده شده است. خورشید ما ، سنین میانی خود را به آرامی میگذاراند. برخی از پیرترین ستارگان شناخته شده در خوشههای کروی جای دارند.
شاید بپرسید که محاسبه عمر ستارگان ، چگونه امکانپذیر است. هیچ کس نمیتواند رشد یک ستاره منفرد را از تولد تا مرگ آن دنبال کند، ولی خیال کنید که هیچگاه درخت ندیدهاید و ناگهان شما را به وسط جنگلی بردهاند، چه پیش میآید؟ درختان گوناگونی خواهید دید که در مراحل مختلف رشد خود هستند: از جوانههای کوچک تا درختان غول پیکر. اگر اندکی زیست شناسی بدانید، میتوانید به چرخه حیات یک درخت پی ببرید. اختر شناسان به روشی مشابه ، با استفاده از قوانین فیزیک و رصد گونههای مختلف ستارگان ، سلسله حوادث زندگی یک ستاره را نتیجه میگیرند.
بعد از آنکه ستاره شکل میگیرد، بلافاصله حیاتی پایدار بدست میآورد. در همین زمان ، واکنشهای هستهای در داخلیترین هسته ستاره ، هیدروژن را به هلیوم تبدیل میکند و انرژی آزاد میشود. سرانجام ، هم هیدروژن درون آن به مصرف میرسد. از این به بعد ، تغییراتی در لایههای درونی ستاره آغاز میشود. در حالی که واکنشهای جدیدی از هلیوم شروع میشوند، لایههای بیرونی باد میکنند تا ستاره را به اندازه غول برسانند.
|
کوتولهها
در اثر تغییرات زیاد ، ستاره به مرحله متغیر بودن میرسد. نهایتا هیچ منبع ممکن برای آزاد سازی انرژی باقی نمیماند. ستارگان کوچکتر ، در اثر انقباض تبدیل به کوتولههای سفید میشوند. ستارگان سنگینتر بهصورت ابرنواختر منفجر میشوند. ماده بیرون ریخته از یک نواختر ، بخشی از گاز بین ستارهای را تشکیل میدهد که زادگاه ستارگان جدید است.
ستارگان در یکی از آخرین مراحل زندگی خود ، پیش از آنکه به کوتوله سفید تبدیل شوند، منظره بسیار زیبایی در آسمان بوجود میآورند. این مرحله ، پیدایش سحابیهای سیارهای است. شکل منظم و رنگهای زیبا ، سبب جذابیت آنها میشود (هیچ رابطهای بین سحابیهای سیارهای و سیارات وجود ندارد. این اصطلاح یادگار رصدهای قدیم تلسکوپی است که شکل دایره آنها با سیارهها اشتباه میشد.). یک سحابی سیارهای هنگامی شکل میگیرد که ستاره مرکزی آن ، لایهای به بیرون پرتاب میکند. لایه گاز همانند حلقهای از دود منبسط میشود.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
طیف تشعشعات خورشیدی بسیار وسیع است و از 0.001 آنگستروم (مربوط به پرتوی گامای شرارهها) تا چندین کیلومتر (مربوط به فرکانسهای بیسار پایین رادیوئی تاج خورشید) است. میزان انرژپی خورشید که به لبههای بالای جو زمین میرسد، حدود 2 کالری بر سانتیمتر مربع در دقیقه است که به نام ثابت خورشیدی خوانده میشود.
بیشترین آگاهیهای ما از راه تجزیه طیفی نور آن فراهم میگردد. طیف مرئی خورشید همانند بیشتر ستارگان ، طیفی است متصل و پیوسته همراه با با یک سری خطوط تیره که به آنها خطهای جذبی یا خطوط فراونهوفر میگویند. سطح خورشید یا رخشان کره تشعشات پیوسته صادر میکند که طبیعتاً فاقد هر گونه خط تیره است، اما با عبور تشعشات مزبور از درون جو زیرین خورشید که میان رخشان کره و رنگین کره قرار دارد و به آن لایه برگردان میگویند، خط تاریک طیفی در آن پدیدار میگردد. لایه برگردان که نخستین و زیرترین لایه از طبقات جو خورشید است، دارای ضخامتی معادل 1500 کیلومتر بوده و دمای آن از رخشان کره کمتر است و شامل اجسام بسیط به حالت گازی یا بخار میباشد.
از آنجائی که اشعه خورشید ناگزیر از این لایه میگذرد، لذا بخارات موجود در طبقه مزبور پارهای از این تشعشات را بر حسب ماهیت بخارات مذکور جذب میکنند و در نتیجه طیف جذبی که ما در زمین مشاهده میکنیم پدید میآید. با تعیین هویت خطوط طیف خورشیدی تا کنون وجود 65 عنصر از 92 عنصری که ما در زمین میشناسیم در خورشید تشخیص داده شده است. ئیدروژن ، کربن ، نیتروژن ، اکسیژن ، آلومینیوم ، آهن ، کبالت ، کادمیم ، سرب و پلاتین در زمره عناصری هستند که در لایه برگردان خورشید وجود دارد.
با بررسی خطوط طیفی ، میزان درصد عناصر شیمیائی مختلف سطح خورشید را اندازه میگیرند. آزمایش انجام شده گویای آن است که سطح خورشید شامل 90 درصد ئیدروژن ، 10 درصد هلیوم و مقدار ناچیزی اکسیژن ، کربن ، نئون و غیره است.
نور آفتاب را به کمک یک منشور ساده میتوان تجزیه نمود و آن را به خط رنگینی که نخستین بار در سال 1666 بوسیله پاسحاق نیوتن توصیف و تفسیر گردیده است، دگرگون ساخت. در سال 1802 ویلیام ولاستون شیمیدان انگلیسی دریافت که رنگین کمان آفتاب بوسیله خطهای سیاهی بریده شده و ژرف فن فراونهوفر فیزیکدان آلمانی در سال 1814 از دستگاهی به نام طیف نما که قادر به نمایش جزئیات طیفی نور آفتاب بود، استفاده کرد و طول موج 324 خط سیاه را اندازه گیری نمود.
آزمایشهایی که در سال 1859 توسط گوستاو کریشوف و روبرت بونسن به عمل آمد، نشان داد که خطهای مزبور بازتاب جذب طیفی نور خورشید بوسیله عناصر شیمیائی گوناگون موجود در جو آن بوده و ویژگی هر یک از عناصر مزبور در خطوط مورد بحث منعکس گردیده است. بررسیهایی که در زمان حاضر روی ترکیبات شیمیائی لایههای بیرونی خورشید به عمل آمده ، بر وسعت دانش بشر افزوده و آگاهی ما را در زمینه عواملی چون ، دما ، تراکم ، سرعت ، چرخش و موجودیت میدان مغناطیسی خورشید به نحو چشمگیری فزونی بخشیده و طیف نمائی و طیف سنجی نور را در مسائل فضائی از اهمیت شایانی برخوردار ساخته است.
عکس برداری و شیوههای دیگر
پیدایش فن عکاسی ، تهیه تصویر زنده خورشید را در لحظات کوتاهی از زمان میسر ساخت و نخستین عکس خوب خورشید در دوم آوریل 1845 بوسیله اچ فیزو ، وال فوکو فرانسوی تهیه گردید و در سال 1851 برکوفسکی از یک خورشیدگرفتگی (کسوف) کامل با موفقیت عسکبرداری نمود. در سال 1892 جرج الری هیل دستگاهی به نام خور طیف بکار را اختراع کرد و به کمک آن سراسر قرص خورشید را به آسانی مورد بررسی قرار داد و بدینسان دیدار خورشید را که سابقاً فقط به خور گرفتهای کامل منحصر میبود، در سایر اوقات نیز امکان پذیر ساخت و افزون بر آن شناخت پدیدههایی مانند زبانههای و مشعلهای خورشیدی را نیز تسهیل نمود.
دستگاه تاج نگار در سال 1930 بوسیله برنارد لیوت فرانسوی اختراع گردید و ستاره شناسان را یاری نمود تا از فراز بلندیها جزئیات درونی تاجهای خورشیدی را در موقعیتهائی غیر از خور گرفتها نیز مورد مطالعه قرار دهند. امواج رادیوئی خورشید در سال 1942 بوسیله جی. اس. هی انگلیسی به کمک مشاهدات راداری کشف گردید و با آغاز عصر فضا ، نشانه رویها و دیدارهای فرا جو زمین مسیر شد و کلیه پرتوهای خورشیدی از نزدیک مورد بررسی قرار گرفت و ما را در زمینه شناخت هر چه بیشتر و کاملتر خورشید توانائی بخشید
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک