سفارش تبلیغ
صبا ویژن
خداوند، خانه ای را که در آن عروسی است، دوست دارد . [امام صادق علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

پس از سال 1985 کم کم مشخص شد که تئورى تار (ریسمان) تصویر کاملى نیست. اول آن که مشخص شد که تارها فقط یک عضو از دسته وسیعى از موضوعاتى هستند که مى توان آنها را به بیش از یک بعد گسترش داد. پال تونسند که همانند من یکى از اعضاى بخش ریاضى کاربردى و فیزیک نظرى در کمبریج است و بسیارى از پژوهش هاى بنیادى این حوزه را انجام داده است، نام پ-برین را براى آنها برگزیده است. هرپ-برین در جهت داراى طول است. بنابراین یک برین با تار است و برین با یک سطح یا غشا و به همین ترتیب تا آخر. به نظر مى رسد که هیچ دلیلى وجود ندارد که تار هاى با را بر سایر مقدار هاى ممکن ترجیح دهیم. در عوض باید اصل موکراسى را بپذیریم: تمام تارها به طور برابر ایجاد شده اند.

تمام تارها را مى توان به عنوان راه حل هایى براى معادلات نظریه هاى ابرگرانش در 10 یا 11 بعد در نظر گرفت. هر چند که ابعاد 10 گانه یا 11 گانه با فضا زمانى که درک مى کنیم، چندان شباهتى ندارد؛ اما در توجیه این نکته گفته مى شود که 6 یا 7 بعد دیگر چنان پیچ خورده و کوچک شده اند که متوجه وجود آنها نمى شویم و فقط ? بعد باقیمانده را که بزرگ و تقریباً مسطح هستند، درک مى کنیم.

لازم است یادآور شوم که شخصاً از پذیرفتن ابعاد بالاتر چندان خرسند نبوده ام. اما از آنجا که اثبات گرا هستم، پرسش «آیا ابعاد بالاتر واقعاً وجود دارند؟» بى معنى است. فقط مى توان پرسید آیا مدل هاى ریاضیاتى با ابعاد بالاتر توصیف مناسبى از جهان ارائه مى دهد یا خیر. ما تاکنون مشاهداتى نداشتیم که براى تفسیر آنها به وجود ابعاد بالاتر نیازى باشد. با این همه این احتمال وجود دارد که این ابعاد را در برخورد دهنده بزرگ هادرون که در ژنو قرار دارد، مشاهده کنیم. اما آنچه که بسیارى از افراد و از جمله مرا متقاعد ساخته است که مدل هاى با ابعاد بالاتر را جدى تلقى کنند، آن است که شبکه اى از ارتباط هاى غیرمنتظره که دوگانگى نامیده مى شود، در این مدل ها وجود دارد. این دوگانگى ها نشان مى دهد که مدل ها اصولاً معادل یکدیگرند، به عبارت دیگر این مدل ها جنبه هاى مختلف یک نظریه بنیادى هستند، که نظریه ام-تئوری نام گرفته است.

اگر وجود این شبکه از دو گانگى ها را نشانه اى از حرکت در مسیر صحیح ندانیم، تقریباً مثل آن است که فکر کنیم خداوند فسیل ها را در صخره ها قرار داده است تا داروین در مورد تکامل حیات گمراه شود. این دوگانگى ها نشان مى دهد که 5 نظریه ابرتار مبانى فیزیکى یکسانى را بیان مى کند و از لحاظ فیزیکى معادل ابرگرانش است. نمى توان گفت که ابر تارها بنیادى تر از گرانش است یا برعکس، ابر گرانش بنیادى تر از ابرتار. بلکه این نظریه ها بیان هاى متفاوتى از یک نظریه بنیادى است که هرکدام از آنها براى محاسبه در موقعیت هاى مختلف مفید واقع مى شوند. نظریه هاى تار براى محاسبه حوادثى که هنگام برخورد چند ذره با انرژى بالا و تفرق آنها روى مى دهد، مناسب است زیرا فاقد بى نهایت ها است. با این همه این نظریه براى توصیف چگونگى تابدار شدن جهان به وسیله انرژى تعداد زیادى ذره یا تشکیل حالت محدود مثل سیاهچاله فایده چندانى ندارد. براى چنین وضعیت هایى به ابر گرانش نیاز است که اصولاً از نظریه فضا زمان خمیده اینشتین همراه با بعضى موضوع هاى دیگر تشکیل شده است. این تصویرى از عمده مطالبى است که پس از این در مورد آنها صحبت خواهم کرد.

مناسب است براى تشریح اینکه چگونه تئورى کوآنتوم به زمان و فضا شکل مى دهد، ایده زمان موهومى را بیان کنیم. شاید به نظر برسد زمان موهومى برگرفته از داستان هاى علمى تخیلى باشد، اما زمان موهومى در ریاضیات مفهومى کاملاً تعریف شده است: زمان موهومى زمانى است که با اعداد موهومى سنجش مى شود. مى توان اعداد حقیقى معمولى همانند 1، 2، 5/3- و غیره را به صورت مکانشان روى خطى که از چپ به راست امتداد دارد در نظر گرفت: صفر در وسط خط، اعداد حقیقى مثبت در سمت راست و اعداد منفى حقیقى در سمت چپ قرار دارند.

اعداد موهومى را مى توان به صورت مکانشان روى خط عمود در نظر گرفت: صفر باز هم در وسط خط قرار دارد، اعداد موهومى مثبت رو به بالا و اعداد موهومى منفى رو به پایین ترسیم مى شود. بنابراین اعداد موهومى را مى توان به صورت نوع جدیدى از اعداد، عمود بر اعداد حقیقى معمولى در نظر گرفت. از آنجایى که این اعداد ساختارى ریاضیاتى هستند لازم نیست که به طور فیزیکى تحقق یابند، هیچکس نمى تواند به تعداد عدد موهومى پرتقال داشته باشد یا صاحب یک کارت اعتبارى با صورت حساب اعداد موهومى باشد.

ممکن است کسى فکر کند که این گفته ها به این معنى است که اعداد موهومى فقط یک بازى ریاضى است که با دنیاى واقعى کارى ندارد. با این همه از دیدگاه فلسفه اثبات گرا نمى توان تعیین کرد که چه چیزى واقعى است. تنها کارى که مى توانیم انجام دهیم این است که دریابیم کدام مدل هاى ریاضى جهانى را که در آن زندگى مى کنیم، توصیف مى کند. معلوم مى شود که مدل ریاضیاتى شامل زمان موهومى نه تنها آثارى را که پیش از این مشاهده کردیم، پیش گویى مى کند، بلکه آثارى را پیش گویى مى کند که تاکنون نتوانسته ایم اندازه گیرى کنیم، ولى به دلایل دیگر، آنها را باور داشتیم. پس چه چیز واقعى و چه چیز موهومى است؟ آیا این دو فقط در ذهن ما متمایز از یکدیگرند؟

نظریه نسبیت عام کلاسیک (یعنى غیر کوآنتومى) اینشتین زمان واقعى را با سه بعد دیگر فضا ادغام مى کند تا فضا زمان چهار بعدى را به وجود آورد.اما جهت زمان واقعى با سه جهت دیگر زمان تفاوت داشت؛ خط جهانى یا تاریخ یک ناظر در زمان واقعى همیشه افزایش مى یابد (به عبارت دیگر زمان همیشه از گذشته به سوى آینده حرکت مى کند.) ولى سه بعد دیگر فضا هم مى توانند کاهش یابند و هم افزایش به عبارت دیگر مى توان در فضا تغییر جهت داد اما نمى توان در خلاف جهت زمان حرکت کرد.

از طرف دیگر، از آنجایى که زمان موهومى عمود بر زمان واقعى است، همانند جهت فضایى چهارم رفتار مى کند و بنابراین زمان موهومى مى تواند شامل احتمال هایى بیش از مسیر راه آهن زمان واقعى باشد که داراى آغاز و پایان است یا روى یک مسیر بسته حرکت مى کند. با توجه به این مفهوم موهومى است که مى گوییم زمان داراى شکل است.


کلمات کلیدی: فیزیک نوین


نوشته شده توسط مهدی 86/3/31:: 6:7 عصر     |     () نظر

 آشکارساز تناسبی نوعی آشکارساز گازی با دو الکترود ، یکی استوانه و یکی سیمی‌ در راستای محور استوانه است. وقتی آشکارساز در ناحیه‌ای (ازلحاظ ولتاژ بین الکترودها) کار کند که در آن شماره یونهای ایجاد شده ، متناسب با انرژی اشعه باشد. در این صورت آشکارساز تناسبی نام دارد. ولتاژ اعمال شده در این آشکارساز بیشتر از ولتاژ اعمال شده در اتاقک یونیزاسیون می‌‌باشد که ولتاژ اعمال شده بین دو الکترود به اندازه‌ای بزرگ است که الکترون یونش یافته یک اتم انرژی کافی درحرکت به سوی الکترود آند بدست می‌‌آورد و انرژی الکترون به اندازه‌ای است که موجب یونش اتمهایی در مسیر خود می‌شود.

مشخصات و طرز کار آشکارساز تناسبی

آشکارساز تناسبی از یک الکترود سیلندری و یک رشته سیم مرکزی که معمولا از تنگستن می‌باشد، ساخته می‌شوند. به دلیل وضع هندسی دستگاه میدان الکتریکی در فاصله x از سیم برابر است با (E=V/xLn(b/a که درآن V ولتاژ وصل شده بین الکترودها و a و b به ترتیب شعاعهای سیم و الکترود خارجی می‌‌باشند. میدان الکتریکی در نزدیک رشته سیم خیلی بزرگتر است و با فاصله از سیم نسبت عکس دارد. بنابراین بیشترین تکثیر در نزدیکی سیم مرکزی انجام می‌‌پذیرد. حدود نصف از زوجهای یون در فاصله‌ای برابر با متوسط طول آزاد و 99% زوجهای یون در هفت برابر متوسط طول آزاد از الکترود مرکزی تشکیل می‌گردند. زمان جمع آوری الکترون‌ها خیلی کوچک است. به هرحال چون الکترون‌ها خیلی نزدیک به الکترود مرکزی ایجاد می‌‌‌شوند، v? مربوط به جمع آوری الکترون در الکترود مرکزی خیلی کوچک می‌باشد.

بنابراین سهم بیشتر سقوط پتانسیل مربوط به یونهای مثبت است. وجود این که یونهای مثبت کندتر از الکترون‌ها هستند، پس از عبور مسافت کمی‌ از سیم مرکزی بیشترین سقوط پتانسیل را درفاصله زمانی کوتاه بوجود می‌‌آورند. درنتیجه ، پالس مربوط به رسیدن یک زوج یون ابتدا خیلی سریع و سپس به کندی صعود می‌نماید. گاهی اوقات وقتی محل تشکیل هر یک از یونها نسبت به الکترود مرکزی متفاوت باشد، زمان تشکیل پالس‌ها نامشخص خواهدبود. در چنین حالتی زمان لازم برای الکترون‌های مختلف در رسیدن به ناحیه تکثیر یکسان نخواهد بود. تقویت کننده‌های مرحله اول یونها را جمع آوری می‌کنند تا این نامعلومی‌ را کاهش دهند.

زمان تفکیک

در آشکارساز تناسبی ، یونیزاسیون محدود به ناحیه اطراف مسیر اشعه می‌باشد. فرض کنیم که تابش 1 در زمان t1 وارد شمارنده می‌شود و تابش مشابه 2 در یک ناحیه دیگر در زمان t2 وارد آشکارساز می‌شود. در الکترود جمع کننده سقوط پتانسیل خواهیم داشت. اگر تقویت کننده دستگاه آشکارساز بتواند این تغیییر ولتاژ را به عنوان دو علامت الکتریکی تشخیص دهد و اگر این کمترین زمان جدایی باشد که این تشخیص امکانپذیر می‌گردد، در این صورت t2-t1 زمان تفکیک (Resolving time) برای آشکارساز تناسبی است. بنابراین زمان تفکیک (T) تابع سیستم الکتریکی است.

اگر زمان تفکیک صفر باشد، تغییر تعداد شمارش برحسب تغییر تعداد تابش باید یک خط مستقیم باشد. به هرحال اگر زمان تفکیک بینهایت باشد، این منحنی در سیستم مختصات y-x به محور x متمایل شده و بالاخره آن را قطع خواهد نمود. یعنی وقتی تعداد تابشهایی که وارد آشکارساز می‌‌شوند افزایش یابد، تعداد شمارش ثبت شده ابتدا افزایش می‌یابد و بعد از رسیدن به یک ماکزیمم به طرف صفر میل می‌کند. در این میزان شمارش صفر ، ولتاژ الکترود جمع کننده ثابت می‌‌ماند. زیرا که میزان جمع آوری یونها برابر میزان نشت یونها خواهد بود.

آشکارساز تناسبی حساس نسبت به محل ورود اشعه

یکی از تفاوتهای اساسی بین آشکارساز تناسبی و آشکارساز گایگر مولر این است که در آشکارساز تناسبی ، یونیزاسیون محدود به ناحیه کوچکی در اطراف مسیر ذره تابشی است. در صورتی که در آشکارساز گایگر یونیزاسیون در تمام حجم آشکارساز انجام می‌شود. بنابراین در آشکارسازهای تناسبی ، امکان این که اطلاعاتی در مورد محل اشعه تابشی بدست آوریم، وجود دارد. در این نوع از آشکارسازها ، آند از یک سیم با مقاومت زیاد (معمولا رشته کوارتز با پوششی از کربن) تشکیل می‌شود. فرض کنیم ذره تابشی در وضعیت x یونهایی در مجاورت آند ایجاد می‌‌نماید. این یونها بوسیله آند جمع آوری شده و باعث جاری شدن جریان در دو جهت در طول آند خواهد شد. مقدار جریانی که از هر جهت جاری می‌شود تابع مقاومت در مسیر می‌باشد. به دلیل تفاوت جریان در دو انتهای آند پالس‌های ایجاد شده در دو انتهای آند در ارتفاع و زمان صعود متفاوت خواهند بود. تفاوت در زمان صعود ، به دلیل تفاوت در ثابت زمانی ، معمولا برای بدست آوردن اطلاعات درباره محل اشعه بکار می‌رود.

شمارش نوترون با آشکارساز تناسبی

علاوه بر اینکه می‌توان از آشکارساز تناسبی برای آشکارسازی ذرات آلفا و بتا استفاده نمود. این آشکارساز می‌تواند در آشکارسازی نوترونها نیز مورد استفاده قرار گیرند. یک آشکارساز واقعی نوترون معمولا گاز BF خالص و یا مخلوطی از BF3 و یکی از گازهای استاندارد آشکارسازهای گازی ، می‌باشد. وقتی که نوترون حرارتی بوسیله هسته جذب می‌شود، دو ذره یونیزه کننده قوی یکی ذره آلفا و دیگری هسته لیتیم که در جهت مخالف حرکت ذره آلفا حرکت می‌‌کند، رها می‌شوند. پالسهای ایجاد شده بوسیله محصولات واکنش هسته‌ای در مقایسه با پالس‌های بوجود آمده بسیله تابشهای نظیر اشعه گاما ، دارای ارتفاع نسبتا بزرگ است.

رابطه ارتفاع پالس با نوع ذره

نکته‌ای که وجود دارد رابطه ارتفاع پالس و نوع ذره است. ارتفاع پالس‌های ایجاد شده با ذرات یونیزه کننده سنگین مانند ذرات آلفا ، ممکن است بطور قابل ملاحظه‌ای از پالس‌های بوجود آمده بوسیله الکترون‌های با انرژی برابر ، متفاوت باشد. این اختلاف تابع نوع اشعه است که معمولا برای آشکارسازهای گازی ، کوچک می‌‌باشد. در مورد آشکارسازهای تناسبی و یونیزاسیون و آشکارساز نیم رسانا این حالت وجود دارد.


کلمات کلیدی: فیزیک نوین


نوشته شده توسط مهدی 86/3/31:: 6:7 عصر     |     () نظر

در اواخر قرن نوزدهم دانشمندان تصور می کردند به توصیـف کامل گیتی نزدیک شده اند. آنان می پنداشتند که فضا در همه جا با واسطه ای پیوسته به نام اتر پر شده است. پرتوهای نور و علائم رادیویی، امواجی در اتر بودند، درست همان گونه که صوت، امواج فشار در هواست. تنها چیزی که برای تکمیل نظریه لازم بود، اندازه گیری دقیق ویژگی های کشسانی اتر بود؛ پس از تعیین این ویژگی ها، همه چیز در جای خود قرار می گرفت.

اما به زودی و به تدریج، مغایرت هایی با اندیشه اتر همه جاگیر پدیدار گردید. انتظار می رفت نور در اتر با سرعت ثابتی حرکت نمــــاید. مثلاً، اگر در جهت نور حرکت می کردید، انتظار داشتید سرعت آن کم تر به نظر برسد، و اگر در خلاف جهت نور حرکت می کردید، انتظار داشتید سرعت آن بیشتر به نظر آید. اما به رغم آزمایش های متعدد، تلاش به منظور یافتن مدرکی برای تغییر سرعت نور در اثر حرکت در اتر، ناکام ماند.

دقیق ترین آزمایش ها توسط آلبرت مایکلسون و ادوارد مورلی در سال 1887 در مؤسسه کیس کلیولند در اوهایو انجام گردید. آن ها سرعت نور را در دو باریکه که نسبت به یکدیگر دارای زاویه قائمه بودند، مقایسه نمودند. آن ها چنیـــن استدلال می کردند که زمین با چرخش به دور محور خود و گردش به گرد خورشید، از میان اتر می گذرد و سرعت نور در این دو باریکه باید متفاوت باشد. اما مایکلسون و مورلی اختلاف روزانه یا سالانه ای میان دو باریکه نور نیافتند. گویی نور، در هر جهتی که حرکت کنی، نسبت به تو با سرعتی ثابت حرکت می کند.

فیزیکدان ایرلندی، جرج فیتزجرالد و فیزیکدان هلندی دیوید لورنتز، نخستین کسانی بودند که گفتند اجسامی که در میان اتر حرکت می کنند، منقبض می شوند و ساعت ها کُند می گردند. این انقباض و کندشدگی (اتساع) چنان است که هرکسی به هر نحو که نسبت به اتر ، که فیتزجرالد و لورنتز آن را ماده ای واقعی می پنداشتند، حرکت کند، سرعت ثابتی را برای نور اندازه گیری خواهد نمود.

اما، این کارمند جوان اداره ثبت اختراعات سویس در برن به نام آلبرت اینشتاین بود که اتر را کناری نهاد و مسئله سرعت نور را یک بار برای همیشه حل کرد. او، در ژوئن 1905، یکی از سه مقاله ای را نوشت که وی را به عنوان یکی از دانشمندان برجسته جهان معرفی کرد- و در این راستا دو انقلاب مفهومی را آغاز نمود که فهم ما را از زمان، فضا و واقعیت تغییر دادند.

در مقاله 1905، اینشتاین نوشت حال که نمی توان آشکار ساخت که آیا در اتر حرکت می کنیم یا خیر، اصلاً مفهوم اتر زیادی است. در مقابل، اینشتاین از این اصل آغاز کرد که قوانین علم باید به دیده همه ناظرانی که آزادانه حرکت می کنند، یکسان بنمایند. به ویژه، ناظران به هر شیوه ای که حرکت کنند، باید همه یک سرعت را برای نور اندازه گیری نمایند.

این، مستلزم رها کردن این اندیشه بود که کمیتی عام موسوم به زمان وجود دارد که همه ساعت ها اندازه می گیرند. هر کس، زمان شخصی خود را داشت. ساعت های دو نفر در صورتی با هم هماهنگ بودند که آن دو نسبت به یکدیگر در حال سکون باشند و نه این که حرکت نمایند. این نکته با چند آزمایش تأیید شد، از جمله آزمایش با ساعت بسیار دقیقی که دور جهان گردانده شد و سپس با ساعتی که در محل ساکن مانده بود، مقایسه گردید. اگر می خواستید بیشتر زندگی کنید، می توانستید به سوی شرق پرواز کنید تا سرعت هواپیما به سرعت چرخش زمین افزوده شود. اما خوردن غذای هواپیما همان و از میان رفتن آن کسر بسیار کوچکی از ثانیه که به عمرتان افزوده می شد، همان.

اصل موضوعه اینشتاین که قوانین طبیعت باید به دیده تمام ناظرانی که در حرکت آزاد هستند، یکسان بنماید، مبنای نظریه نسبیت بود که از آن رو چنیــــن نامیده می شود که حکایت از آن دارد که فقط حرکت نسبی مهم است. زیبایی و سادگی آن برای بسیاری از دانشمندان و فیلسوفان متقاعدکننده بود. اما مخالفت های بسیاری هم به جای مانده بود. اینشتاین دو مطلق علم قرن نوزدهم را واژگون کرده بود: سکون مطلق که با اتر نمایش داده می شد و زمان مطلق یا عامی که تمام ساعت ها اندازه گیری می نمودند. مردم می پرسیدند آیا این بدان معناست که معیار اخلاقی مطلقی وجود ندارد، که همه چیز نسبی است؟

این ناراحتی در دهه 1920 و 1930 ادامه یافت. هنگامی که در سال 1921 جایزه نوبل به اینشتاین داده شد، این امر به دلیل کار مهم- اما با معیارهای اینشتاین، جزئیِ- دیگری بود که در سال 1905 انجام داده بود. به نسبیت، که تصور می رفت بسیار بحث برانگیز است، اشاره ای نشد. هنوز هم من هفته ای دو یا سه نامه دریافت می کنم که می گویند اینشتاین اشتباه کرده است. با این همه، اکنون، جامعه علمی نظریه نسبیت را به طور کامل پذیرفته است و پیش بینی های آن در کاربردهای بیشمار تصدیق شده اند.

یکی از نتایج مهم نسبیت، رابطه میان جرم وانرژی است. این اصل اینشتاین که سرعت نور باید به دیده همه یکسان باشد، نشان می داد که هیچ چیز نمی تواند از نور سریع تر حرکت نماید. آن چه روی می دهد این است که با مصرف انرژی برای شتاب دادن به ذره یا سفینه، جرم شیء افزایش می یابد و شتاب بیشتر دادن به آن را دشوارتر می سازد. شتاب دادن به ذره تا سرعت نور ناممکن است زیرا به مقداری نامتناهی انرژی نیاز دارد. هم ارزی جرم و انرژی به اختصار در معادله مشهور اینشتاین، 2mc= E نشان داده می شود، که شاید تنها معادله فیزیک باشد که مردم کوچه و خیابان هم آن را می دانند.

از جمله نتایج این قانون آن است که با شکافت هسته اتم ارانیوم به دو هسته با مجموعِ جرمی که اندکی کمتر است، مقدار زیادی انرژی رها می شود. در سال 1939، با شعله ور شدن آتش جنگ، گروهی از دانشمندان که به نتایج این امر پی برده بودند، اینشتاین را وادار کردند که بر تردیدهای صلح آمیز خود غلبه نمایـد و نامه ای برای رئیس جمهور روزولت بنویسد و در آن از وی بخواهد که ایالات متحده برنامه تحقیقات هسته ای را آغاز نماید. این، به پروژه منهاتان و بمب اتمی ای منتهی گردید که در سال 1945 بر فراز هیروشیما منفجر شد. برخی، اینتشاین را به دلیل بمب اتمی سرزنش می نمایند، زیرا او بود که رابطه میان جرم و انرژی را کشف کرد. اما مثل آن است که نیوتن را به دلیل کشف گرانش که موجب سقوط هواپیـــماها می گردد، سرزنش کنند. اینشتاین در پروژه منهاتان نقشی نداشت و انفجار او را وحشت زده کرد.

هرچند نظریه نسبیت به خوبی در چارچوبِ قوانین حاکم بر الکتریسیته و مغناطیس قرار می گرفت، اما با قانون گرانش نیوتن سازگار نبود. این قانون می گفت اگر توزیع ماده را در یک منطقه از فضا تغییر دهید، تغییر در میدان گرانشی در هرجای دیگری در گیتی بلافاصله احساس خواهد شد. این نه تنها بدان معنا بود که می توانید علائمی با سرعتی بیش از سرعت نور ارسال کنید (امری که نسبیت منع می کرد)، بلکه نیازمند زمان مطلق یا عامی نیز بود که نسبیت آن را به نفع زمان شخصی یا نسبیتی کنار گذاشته بود.

اینشتاین، در سال 1907 که هنوز در اداره ثبت اختراعات برن بود، از این دشواری آگاهی داشت، اما تا سال 1911 که به دانشگاه آلمانی پراگ آمد، تفکر جدی در باره این مسئله را آغاز نکرده بود. او دریافت که میان شتاب و میدان گرانشی رابطه نزدیکی وجود دارد. کسی که در اتاقکی بسته نشسته است، نمی تواند بگوید آیا در میدان گرانشی زمین در حال ســـکون است، یا موشکی در فضای آزاد به او شتاب می دهد. (این به دوران پیش از «پیشتازان فضا» مربوط می شود، اینشتاین مردم را به جای سفینه در آسانسور تصور می کرد. اما شما نمی توانید قبل از وقوع فاجعه در آسانسور، مسافت زیادی را برای شتاب گرفتن طی کنید یا آزادانه سقوط نمایید).

اگر زمین تخت بود هم می توانستید بگویید سیب به دلیل گرانش روی سر نیوتن افتاد و هم می توانستید بگویید سر نیوتن به سیب برخورد کرد زیرا او و سطح زمین به سوی بالا شتاب می گرفتند. اما، به نظر نمی رسد که این هم ارزی میان شتاب و گرانش برای زمین کروی چندان مفید باشد؛ مردم طرف دیگر جهان می بایست در جهت مخالف شتاب بگیرند، اما در فاصله ثابتی نسبت به ما باقی بمانند.

اینشتاین با بازگشت به زوریخ در سال 1912، با توفانی مغزی روبرو گردید. او دریافت اگر در هندسة واقعیت انعطافی وجود داشته باشد، ممکن است هم ارزی شتاب و گرانش مفید باشد. اگر جا-گاه -- چیزی که اینشتاین ابداع نموده بود تا سه بُعد آشنای زمان را با بُعد چهارم یعنی زمان، در هم آمیزد-- خمیده بود و نه آن گونه که تصور می شد، تخت، چه؟ تصور وی این بود که جرم و انرژی جا-گاه را به شیوه ای که هنوز می بایست آن را تعیین نماید، خمیده می سازند. اشیائی مانند سیب و سیاره تلاش می کنند در جا-گاه در مسیر مستقیم حرکت نمایند، اما چنین می نماید که میدان گرانشی مسیر آن ها را خمیده می سازد، زیرا جا-گاه خمیده است.

اینشتاین با کمک دوست خود. مارسل گروسمان، نظریه فضاها و رویه های خمیده را مطالعه کرد که برنارد ریمان چونان بخشی از ریاضیات انتزاعی و بدون تصور این که به جهان واقعی ربطی داشته باشد، پدید آورده بود. در 1913، اینشتاین و گروسمان مقاله ای نوشتند و در آن این اندیشه را مطرح ساختند که ما نیروهای گرانشی را چونان نِمود این حقیقت می دانیم که جا-گاه خمیده است. اما به دلیل اشتباه اینشتاین (که انسان بود و جایزالخطا) نتوانستند معادلاتی را بیابند که انحنای جا-گاه را به جرم و انرژی درون آن مرتبط سازد.

اینشتاین در برلین، به دور از مسائل داخلی و عمدتاً فارغ از جنگ، به کار ادامه داد تا سرانجام در نوامبر 1915، معادلات صحیح را یافت. اینشتاین در بازدید از دانشگاه گوتینگن در تابستان 1915 در باره اندیشه های خود با دیوید هیلبرت ریاضیدان بحث کرده بود و هیلبرت، مستقل از اینشتاین و چند روز پیش از وی، همین معادلات را یافته بود. با این همه، همان گونه که هیلبرت اذعان نموده است، افتخار نظریه جدید از آن اینشتاین بود. اندیشه وی، مرتبط ساختن گرانش با خمیدگی جا-گاه بود. به لطف دولت متمدن آلمان در این دوره بود که این بحث ها و مبادلات علمی حتی در دوران جنگ، می توانست بدون دشواری ادامه داشته باشد. چه تضادی با بیست سال بعد!

نظریه جدید جا-گاه خمیده را نسبیت عام نامیدند تا آن را از نظریه اولیه بدون گرانش، که اکنون نظریه نسبیت خاص خوانده می شد، متمایز سازند. در سال 1919 که هیئت اعزامی انگلیسی به آفریقای غربی، در حین خورگرفت (کسوف)، جابجایی اندکی را در موضع ستارگان نزدیک خورشید رصد کردند، این نظریه به طرزی شگفت تأیید شد. همان گونه که اینشتاین پیشبینی نموده بود، نور این ستارگان با عبور از کنار خورشید، خمیده می شد. این شاهدی است مستقیم بر آن که فضا و زمان خمیده اند، یعنی بزرگترین تغییری که از زمانی که اقلیدس در حدود 300 پیش از میلاد مبانی خود را نوشت، در درک ما از عرصه ای که در آن زندگی می کنیم، پدید آمده است.

نظریه نسبیت عام اینشتاین، فضا و زمان را از زمینه منفعلی که رویدادها در آن روی می دهند به شرکت کنندگان فعالی در دینامیک کیهان تبدیل نمود. این، به مشکل بزرگی منتهی شد که در انتهای قرن بیستم، هنوز در پیشانی فیزیک قرار دارد. جهان سرشار از ماده است و ماده جا-گاه را چنان خمیده می سازد که اجسام به سوی یکدیگر سقوط می کنند. اینشتاین دریافت که معادلات وی برای توصیف جهانی که در طول زمان تغییر نمی کند، جوابی ندارند. به جای رها کردن جهان ایستا و جاوید، که در آن زمان وی و اغلب مردم دیگر بدان باور داشتنـــد، معادلات را با افزودن جمله ای به نام ثابت کیهانی تغییر داد که فضا را در جهت دیگر چنـــــان خمیده می ساخت که اجسام از هم دور شوند. اثر رانشی ثابت کیهانی، اثر کششی ماده را خنثی می نمود و جهانی را ممکن می ساخت که تا ابد به جای خود باقی است.

معلوم شد که این یکی از بزرگترین فرصت های از دست رفته فیزیک نظری بوده است. اگر اینشتاین به همان معادلات اصلی خود وفادار مانده بود، می توانست پیش بینی نماید که جهان باید یا در حال انقباض باشد یا در حال انبساط. تا دهه 1920، که رصدهایی با تلسکوپ 100 اینچی مونت ویلسون انجام گرفت، امکان جهان وابسته به زمان جدی گرفته نشد. این رصدها نشان دادند هرچه کهکشان ها از ما دورتر باشند، سریعتر دور می شوند. به عبارت دیگر، جهان در حال انبساط است و فاصله میان دو کهکشان با گذشت زمان به طرز یکنواخت افزایش می یابد[1]. اینشتاین، بعدها، ثابت کیهانی را بزرگترین اشتباه عمر خود خواند.

پس از جنگ جهانی دوم به متفقین اصرار کرد برای مهار بمب اتمی، حکومتی جهانی برقرار سازند. در سال 1952 ریاست جمهوری دولت جدید اسراییل به وی پیشنهاد شد، اما آن را نپذیرفت. زمانی نوشته بود «سیاست امری است لحظه ای در حالی که معادله به ابدیت تعلق دارد». بهترین گورنوشت و یادمان برای او، معادلات نسبیت عام است.

جهان در طول 100 سال گذشته بسیار بیش از هر قرن دیگری در طول تاریخ تغییر کرده است. دلیل این امر نه سیاسی است و نه اقتصادی، بلکه فناورانه است- فناوری هایی که مستقیماً از پیشرفت های علوم پایه سرچشمه گرفته اند. بدیهی است که برای این پیشرفت ها، نماینده ای بهتر از اینشتاین، مرد قرن مجله تایم، وجود ندارد.


کلمات کلیدی: فیزیک نوین


نوشته شده توسط مهدی 86/3/31:: 6:5 عصر     |     () نظر

آیا نسبیت عام در زندگى روزمره ما اهمیت دارد؟ بستگى دارد توقع مان از زندگى چه باشد. دو مثال زیر موضوع را روشن مى کند.

امروز مردم توقع دارند که بتوان زمین لرزه را پیش بینى کرد تا از فاجعه هایى که پیشتر طبیعى یا آسمان نامیده مى شد جلوگیرى شود. این کار نیازمند آن است که شبکه اى از ایستگاه هاى لرزه نگارى در سطح زمین ایجاد شود. هر ایستگاه لرزه نگارى در واقع سه ابزار بسیار مهم دارد: یکى لرزه نگار که وسیله اى است که لرزش هاى زمین را ثبت مى کند، یک ساعت دقیق که باید زمان را ثبت کند و یک فرستنده که باید اطلاعات را به ایستگاه هاى مرکزى بفرستد. نقش ساعت در اینجا بسیار مهم است. وقتى در یک جاى زمین لرزه اى روى مى دهد موجى در سطح و عمق زمین راه مى افتد و به ایستگاه هاى مختلف مى رسد. هر ایستگاه موجى را که به آن رسیده ثبت مى کند. براى آنکه کانون زمین لرزه و ساختار زمین شناختى مسیر آن معلوم شود، باید دانست که دقیقاً موجى کى به کدام ایستگاه رسیده است. بدون چنین اطلاعى آنچه لرزه نگارها ثبت مى کنند بسیار کم ارزش است. بنابراین باید ساعت هایى که در ایستگاه هاى لرزه شناسى هست با دقت کار کنند و علاوه بر آن با دقت با هم همزمان شده باشند. این کار باید با دقت بسیار زیادى انجام شده باشد و در اینجا است که نسبیت عام وارد مى شود. فیزیک پیشه ها سال ها است که تصحیح هاى نسبیت عامى را در این همزمان کردن و تنظیم کردن ساعت ها رعایت مى کنند.7 پس اگر دوست داریم سیستم لرزه نگارى جهانى بتواند اطلاعات درستى از زمین لرزه ها ثبت کند تا زمین فیزیک پیشه ها به کمک آنها بتوانند شناخت کامل ترى از زمین لرزه پیدا کنند، تا بتوان زمین لرزه ها را پیش بینى کرد و از فاجعه ها جلوگیرى کرد، آن وقت مى بینیم در زندگى روزمره هم به نسبیت عام نیازمندیم. توقع دیگرى که امروز مردم دارند این است که وسیله اى داشته باشند که در هر جا که هستند موقعیت شان را نشان بدهد. چنین فناورى اى اکنون هست. آمریکا ماهواره هایى مى سازد و آنها را در مدار هایى به دور زمین قرار مى دهد. این ماهواره ها به همراه چند ایستگاه زمین سیستمى را مى سازند که جى پى اس نام دارد.8 هر یک از این ماهواره ها در واقع یک ساعت اتمى بسیار دقیق و یک فرستنده است. فرستنده در هر لحظه اطلاعاتى را به زمین مى فرستد. یکى از مهم ترین اطلاعات زمانى است که ساعت توى ماهواره نشان مى دهد. این اطلاعات چنانند که اگر در نقطه اى روى زمین بتوانیم همزمان اطلاعاتى را که چهار ماهواره مى فرستند بگیریم، مى توانیم با محاسباتى مکان خود را تعیین کنیم. براى آنکه بتوانیم با دقت بهترى از چند صد متر مکان یابى کنیم، باید تصحیح هاى نسبت عامى را هم وارد کنیم. پس اگر دوست داریم سیستم مکان یابى ما بتواند بین کوچه هاى مختلف یک خیابان فرق بگذارد، مى بینیم که در زندگى روزمره هم به نسبیت عام نیازمندیم.

*گروه فیزیک، دانشگاه الزهرا

پى نوشت ها

1- خود اینشتین این کشف را شادترین رویداد، زندگى اش نامید.

2- اتاقک را از هر جایى که ول کنیم و با هر سرعت اولیه اى که ول کنیم این حرف درست است. از جمله اگر اتاقک را از ارتفاع چند هزار کیلومترى و با چنان سرعتى رها کنیم که به دور زمین بگردد! ماهواره هایى که به دور زمین مى گردند دقیقاً چنین اتاقک هایى هستند و آنچه مشاهده مى شود این است که در این سفینه ها هیچ چیز وزن ندارد!

3- ریمان که مى خواست در دانشگاه گتنیگن استخدام شود، مى بایست به رسم آن روز سه مطلب به هیات داوران پیشنهاد کند و درباره یکى از آنها به انتخاب هیات داوران سخنرانى کند. گاوس جزء داوران بود و یکى از عناوینى که ریمان انتخاب کرده بود براى گاوس بسیار جذاب بود: درباره فرض هایى که اساس هندسه اند. گاوس این موضوع را انتخاب کرد و ریمان در یک سخنرانى اساس چیزى را بیان کرد که امروزه هندسه ریمانى نام دارد.

4- در واقع پس از این دوره اینشتین یکى از هندسه پیشه هاى بزرگ بود؛ هم تراز هندسه پیشه هایى مثل الى کارتان و هرمان وایل.

5- نسبیت عام در 1915 یعنى درست وسط جنگ جهانى اول تکمیل شد. شوارتس شیلد در این موقع افسر بود و در سال 1916 بر اثر بیمارى درگذشت. یک نفر وسط جنگ نظریه اى ساخته که گرانش و نسبیت خاص را آشتى بدهد، یکى دیگر وسط همین جنگ به فکر حل کردن این معادله هاى جدید افتاده و تازه یکى از دانش پیشه هاى کشور دشمن به این فکر افتاده که برویم وسط دریا از خورشیدگرفتگى عکس بگیریم، ببینیم این حرف ها درست است یا نه!

6- هر وقت از مدل استاندارد چیزى نام برده مى شود، منظور این است که این مدل آنقدر موفق است که تقریباً همه فیزیک پیشه هاى آن رشته به درست بودن آن اعتقاد پیدا کرده اند و آن را مبناى کار هاى بعدى گذاشته اند. البته اگر فیزیک پیشه هایى بتوانند نشان بدهند که یک «مدل استاندارد»ى درست نیست، کار بزرگى کرده اند.

7- اگر نکنند نتیجه غلط مى شود. در واقع اگر امروز با صرف هزینه بسیار یک ساعت اتمى فوق دقیق بخرید و به خانه بیاورید، باید ارتفاع خانه تان از سطح دریا را با دقت تعیین کنید و آن را به کامپیوتر ساعت بدهید. ساعت بر مبناى معادله هاى نسبیت عامى براى شما زمان سنجى مى کند. تازه در این وضعیت ساعت شما در واقع یک کرونومتر است. براى آنکه آن را با ساعت رسمى (UT یا GMT) به دقت همزمان کنید باید باز هم تصحیح هاى نسبیت عامى را محاسبه و اعمال کنید!

8- روس ها هم سیستم مشابهى دارند به نام GLONASS.

بزرگ ترین اشتباه اینشتین

بعد از تکمیل نسبیت عام اینشتین به این مسئله پرداخت که معادله هایى که نوشته چه چیزى براى کل جهان یا کیهان پیش بینى مى کنند. فرض هایى بسیار معقول و کلى براى کل کیهان کرد. مثلاً اینکه کیهان در مقیاس هاى بزرگ نه مرکز مرجحى دارد نه امتداد. مرجحى معادله ها را حل کرد و در کمال تعجب دید که حل ایستا ندارند: یا جهان در حال بزرگ شدن است یا در حال کوچک شدن، در گذشته اى متناهى از یک نقطه آغاز شده و ممکن است در آینده اى متناهى به یک نقطه بینجامد! از این حل خوشش نیامد. دستى در معادله هایش برد. جمله اى به آنها افزود. در این جمله ثابتى ظاهر مى شود که آن را ثابت کیهان شناختى نامگذارى کرد. اگر این ثابت که آن را با ؟ نشان مى دهند، صفر باشد، معادله ها مى شوند همان معادله هاى قبلى اگر لاندا مثبت باشد، جلوى انبساط عالم گرفته مى شود و اگر لاندا منفى باشد، جهان به نحو فزاینده اى منبسط مى شود. چند سال بعد ادوین هابل منجم آمریکایى انبساط جهان را کشف کرد! پس از آن اینشتین گفت این افزودن جمله کیهان شناختى به معادله هایش بزرگ ترین اشتباه زندگى اش بوده. امروز یک نظریه بسیار موفق براى کیهان شناخت داریم موسوم به مدل استاندارد کیهان شناخت.6 یکى از سنگ هاى اصلى این بناى بسیار عظیم و زیبا نسبیت عام است

سه قدرتى که در جهان حکومت مى کنند

«2 راه براى زندگى است:

یکى از این تفکر که هیچ چیز یک معجزه نیست. دیگر این تفکر که همه چیز یک معجزه است»

آلبرت اینشتین (1955-1897)

بیشتر اوقات ساکت و خاموش بود و هرگز بازى هاى کودکان را دوست نداشت. آن روزها وقتى سربازان با غرش طلب ها در خیابان هاى مونیخ به حرکت درمى آمدند، پنجره هاى عمارت ها براى دیدن آنها باز مى شد اما هنگامى که آلبرت کوچک با پدر و مادرش با چنین صحنه هایى برخورد مى کردند برخلاف کودکان دیگر به گریه و زارى مى پرداخت. از همان دوران کودکى از «اجبار» جمعى توسط عده اى دیگر تنفر داشت. سرانجام پسر بچه یهودى ما به مدرسه کاتولیک ها رفت و هیچ وقت دروغ نمى گفت. شاگردان مدرسه نام او را «شرافتمند» گذاشته بودند و همه او را شاگردى خیالباف و دوست داشتنى مى دانستند. پدر و مادرش گرچه از دیرفهمى او نگران بودند اما این قضیه را پنهان مى کردند. مادرش یک روز گفت «شاید روزى او استاد بزرگى شود» در مواقعى که فامیل و آشنایان دسته جمعى به تپه هاى سرسبز اطراف مى رفتند و همه بچه ها دسته جمعى دنبال بالا رفتن از تپه و بازى هاى خاص کودکان بودند ولى آلبرت به گوشه اى مى رفت و ساعت ها به برگ درختان و حرکت موج گونه درختان موقع وزش باد یا حرکت مورچه ها یا ملخ ها خیره مى شد و متفکرانه غرق در طبیعت مى شد. در یکى از روزهاى ماه ژوئن 1905 مردى جوان با موهاى ژولیده خسته و وامانده به اداره پست شهر «برن» آمد و بسته نسبتاً بزرگى را که روکش آن از زرورق هاى سیگار بود به دست کارمند داد.

آدرس: «مجله عملى آنالن در رشته فیزیک در لایپزیک آلمان» وقتى که مرد برمى گشت آرامش فکرى نداشت. نتیجه سال ها کوشش شدید فکرى و زحمت بسیار فشرده مغز او بود که پست شد. مرد آنقدر خسته بود که چند روز بر سر کار خود در اداره ثبت اختراعات برن حاضر نشد. سال 1905 در مجله آنالن فیزیک، 5 مقاله از او درج شد. مقاله اى تحت عنوان «سنجش ابعاد مولکول از یک راه نو» که در دانشگاه را براى این کارمند ناشناس گشود.

مقاله اى تحت عنوان «درباره نظریه مربوط به تولید و تبدیل نور» که بعدها نام «فتوالکتریک» گرفت براى او جایزه نوبل را به ارمغان آورد. این کشف او بر اعتبار فیزیک کوانتوم افزود و به کارهاى طیف نگارى کمک کرد. سومین مقاله مربوط به «حرکت کوچکترین ذره شناور در یک مایع» است که زمانى موضوع تحقیقات رابرت براون گیاه شناس معروف انگلیسى بود. چهارمین مقاله «الکترودینامیک اجسام متحرک» بود. این مقاله عجیب و غریبى بود! چرا که هیچ زیرنویس و منبع و ماخذى نداشت و نویسنده به هیچ دانشمند قبلى استناد نکرده است. این مقاله در نمایش خطوط کلى نظریه نسبیت نوشته شده بود.

و مقاله پنجم «آیا سختى یک جسم به انرژى محتوى آن بستگى دارد؟» که یک جورهایى به قصد بیان نظریه نسبیت از وجود نیرویى شگرف و بى سابقه خبر داد. آلبرت آنقدر معروف شده بود که دیگر همه او را در دنیا مى شناختند. از کشورهاى دیگر دعوتنامه دریافت کرد که براى سخنرانى یا زندگى به آنجا برود. او به انگلیس، فرانسه و ژاپن رفت و سرانجام به آمریکا و پرینستون. روزى 2 دانشجوى آمریکایى بر سر شهرت اینشتین شرط بندى مى کنند. لذا نامه اى به نام و نشانى کوتاه و مختصر «پروفسور اینشتین، اروپا» پست کردند که این نامه بدون تاخیر به مقصد رسید. دخترى از اهالى پرینستون غالب روزها منزل خود را ترک مى کرد و به منزل اینشتین مى رفت. مادر او از این موضوع متعجب شده و از دخترک توضیح خواست و دخترک گفت، مسئله ریاضى مدرسه را نمى توانستم در منزل حل کنم و مردم مى گفتند که در خانه شماره 112 ریاضیدان بزرگى زندگى مى کند که درعین حال مرد بسیار خوبى است، به خانه او رفتم و از او خواهش کردم که در حل مسئله به من کمک کند، وى با کمال میل قبول کرد و مسئله را بسیار خوب براى من توضیح داد و وقتى که او شرح مى داد مسئله خیلى ساده تر از آن بود که معلم مدرسه براى بچه ها بیان مى کرد. و در آخر هم به من گفت، هر وقت مسئله و مشکلى داشتى که نتوانستى آن را حل کنى پیش من بیا. مادر از این کار دختر خود ناراحت شد و از اینشتین عذرخواهى کرد. اما اینشتین پاسخ داد: هیچ گونه عذرخواهى لازم نیست، قطعاً من ضمن صحبت با این کودک خیلى بیشتر از او آموختم تا او از من. پروفسور آلبرت اینشتین روز دوشنبه 28 فروردین سال 1334 مصادف با 28 آوریل 1955 جهان پرآشوب را وداع گفت.

بنابر وصیت اینشتین هیچ گونه تشییع جنازه اى از او به عمل نیامد.

دانشگاه تهران نیز تلگراف تسلیتى به مناسبت درگذشت آلبرت اینشتین مخابره کرد و مجلس یادبودى برپا ساخت. جواهر لعل نهرو نخست وزیر هند بحق در مورد وى گفته است «وى دانشمند بزرگ این عصر و به واقع یکى از جویندگان عدالت و راستى بود که هرگز با ناراستى و ظلم مصالحه نکرد». اینشتین درباره تدریس فیزیک به کودکان تفکر بسیار کرده بود. و نظرهاى جالب توجهى داشت و بر خلاف اغلب دانشمندان که از تدریس مطالب مقدماتى عار دارند، همواره اظهار تاسف مى کرد که هیچ وقت فرصت تدریس در مدرسه متوسطه نداشته است!


کلمات کلیدی: فیزیک نوین


نوشته شده توسط مهدی 86/3/31:: 6:5 عصر     |     () نظر

 اکنون وظیفه ماست که ماهیت رابطه ذهنمان با طبیعت را چنان تمام و کمال درک کنیم که تغییر دیگرى، نظیر آنچه اینشتین در درک ما از این ماهیت به وجود آورد، براى همیشه غیرممکن باشد.

پرسى بریجمن- منطق فیزیک مدرن

در بررسى هاى تازه اى که درباره شکل گیرى مکاتب تجربه گراى نوین - نظیر پوزیتیویسم منطقى و عملیات گرایى- صورت پذیرفته است یک نکته واضح است: تجربه گرایان نوین بیش و پیش از آن که وامدار فلاسفه تجربه گراى پیش از خودشان باشند ملهم از نظریه هاى انقلابى علمى معاصر خود هستند. از نظر ایشان مکاتب فلسفى باید بتوانند نتایج ناشى از انقلابات علمى در فیزیک، شیمى، زیست شناسى، هندسه و منطق در پایان قرن نوزدهم و ابتداى قرن بیستم را هضم کنند. نمونه عالى این نتایج انقلابى نظریه نسبیت خاص و عام اینشتین است که درک فیزیکدانان و فلاسفه را از مفهوم فضا و زمان براى همیشه دستخوش تغییر کرد.

مکاتب فلسفه علم غالب در نیمه اول قرن بیستم که دغدغه به دست دادن معیار معنادارى براى تمییز گزاره هاى معنادار از بى معنا را داشتند معمولاً به مثال هاى اینشتین در مورد مفهوم همزمانى ارجاع مى دادند. فرض کنید کسى ادعا مى کند دو رویداد که از لحاظ مکانى دور از یکدیگر واقع شده اند به صورت همزمان رخ داده اند: مثلاً کسى ادعا مى کند که اولین خمیازه صبحگاهى رئیس جمهور ایران همزمان با یک سرفه عصرگاهى نخست وزیر ژاپن رخ داده است. این دو رویداد را به ترتیب رویداد ایران و رویداد ژاپن مى نامیم. همانطور که اینشتین به ما مى گوید براى تحقق این ادعا چند کار باید صورت پذیرد. اول به دو وسیله اندازه گیرى زمان احتیاج داریم که درون یک دستگاه زمانى واحد همزمان synchronized شده باشند. دو مشاهده گر باید لحظه وقوع رویداد ایران و رویداد ژاپن را ثبت کنند. سپس نتایج ثبت شده باید با یکدیگر مقایسه شوند؛ براى این کار باید یکى از مشاهده گرها نتیجه عمل اندازه گیرى خود را به دیگرى اعلام کند. در بهترین شرایط این انتقال اطلاعات حداکثر با سرعت نور میسر است. به این ترتیب مشخص مى شود که صحبت از همزمانى مطلق دو رویداد که در نقطه واحدى در جریان زمانى رخ داده باشند بى معناست. همه آنچه مى شود گفت همزمانى نسبى دو رویداد (درون یک دستگاه زمانى است) که محدودیت هاى ناشى از حد نهایى سرعت (نور) در آن دخیلند. تجربه گرایى نوین از مثال هایى نظیر این استفاده مى کردند تا نشان دهند همه محتواى تجربى یک گزاره آن است که بشود به صورت تجربى تحقیقش کرد. گزاره ها چیزى بیشتر از روش تحقیق تجربى شان نمى گویند.

از بین پوزیتیویست هاى منطقى موریتس شلیک بنیانگذار حلقه وین اولین کسى بود که به نتایج فلسفى نظریه نسبیت علاقه نشان داد. او در 1915مقاله اى منتشر کرد با عنوان «اهمیت فلسفى اصل نسبیت» که در آن ادعا کرده بود نه پوزیتیویسم ماخ و نه فلسفه نوکانتى کاسیرر نمى توانند حق نظریه نسبیت را ادا کنند و در نتیجه هر دو باید طرد شوند. ریشه هاى تفکر پوزیتیویست هاى منطقى را مى توان به راحتى در این کتاب یافت. از نظر آنان همه آنچه از فلسفه (علم) انتظار مى رود این است که تبعات منطقى/ مفهومى نظریه هاى علمى را بررسى کند.

از سوى دیگر استفاده از دستگاه هاى هندسى غیراقلیدسى در نظریه هاى اینشتین نیز باردیگر فلاسفه ریاضى را با سئوال «دستگاه هندسى درست کدام است؟» رو به رو کرد. این پرسشى است که کارنپ در تز دکترایش (1922) پى گرفت و باعث شد او بین هندسه تجربى/ مشاهدتى، هندسه قراردادى/ صورى و هندسه پیشینى/ شهودى تمایز قائل شود. از سوى دیگر مسئله سادگى (کدام نظریه ساده تر است؟ و چرا نظریه ساده تر بهتر است؟) از همین زمان به عنوان یکى از مسائل محورى فلسفه علم تجربه گرایان درآمد. براى تجربه گرایان منطقى صحبت از سادگى دستگاه هندسه اقلیدسى به خودى خود معنایى نداشت چون از این دستگاه پیش بینى تجربى در نمى آید. بحث سادگى آنجا مطرح مى شد که استفاده از دستگاه هاى هندسى غیراقلیدسى به صورتبندى ساده ترى از نظریه نسبیت عام- به مثابه یک ادعاى تجربى- مى انجامید و در نتیجه به انتخاب آنها توصیه مى شد.

از بین اعضاى حلقه وین اما شاید مهمترین کار درباره تبعات فلسفى نظریه نسبیت را فیزیکدان آلمانى هانس رایشنباخ انجام داده باشد. وى در دو کتاب مهمش «نظریه نسبیت و معرفت پیشینى» و «اصول بندى نظریه نسبیت» به بررسى توامان علمى و فلسفى این نظریه مى پردازد و ادعا مى کند مفهوم معرفت پیشینى که توسط کانتى ها ضرورى و جهانشمول فرض مى شود باید تغییر کند. رایشنباخ مفهوم معرفت پیشینى نسبى (نسبت به یک دستگاه مختصات) را پیش مى نهد که البته به دنبال انتقادات شلیک از این نگرش دست مى شوید.

نتیجتاً اینکه نظریه هاى نسبیت اینشتین هم در شکل گیرى آراى فلسفى تجربه گرایان نوین نقش داشته اند و هم به عنوان نظریه هاى غالب علمى موضوع بحث هاى فلسفه علمى ایشان بوده است.


کلمات کلیدی: فیزیک نوین


نوشته شده توسط مهدی 86/3/27:: 8:20 عصر     |     () نظر
<      1   2   3   4   5   >>   >