هر گاه یک دسته پرتو را بصورت موازی بر سطح یک عدسی بتابانیم و پرتوها بعد از شکست و عبور از عدسی در طرف دیگر آن به همدیگر نزدیک شده یا به اصطلاح همگرا شوند، چنین را عدسی محدب یا همگرا میگویند. |
مقدمه
بارها ملاحظه کردهایم که بچهها با استفاده از یک ذره بین میتوانند آتش روشن کنند و یا پیر مردها برای خواندن قرآنهای با خطوط ریز از ذره بین استفاده میکنند. همه اینها نوعی عدسی محدب است. مثلا در مورد اول با استفاده از عدسی پرتوهای خورشید در یک نقطه روی کاغذ یا یک ماده قابل اشتغال متمرکز میگردند و به این طریق دمای این نقطه بالا رفته و لحظهای فرا میرسد که آن ماده یا کاغذ آتش میگیرد. بنابراین میتوان گفت که خصوصیت بارز این نوع عدسیها همگرا کردن یا جمع نمودن پرتوها در یک نقطه است. در عدسیهای همگرا ، لبهها نازک تر از وسط آن هستند و بطور معمول برای کاربردهای مختلف به شکلهای گوناگون دو کوژ ، کوژ تخت و هلالی همگرا ساخته میشوند.
در حالت کلی عدسی از دو سطح کروی تشکیل شده است که هر کدام از این سطوح قسمتی از سطح یک کره کامل است. خطی که مراکز این کرهها را به یکدیگر وصل میکند، محور اصلی نام دارد. نقطه میانی عدسی را که روی محور اصلی قرار دارد، مرکز نوری میگویند. اگر بوسیله چراغ یا هر وسیله دیگری یک پرتو نوری را بر مرکز نوری عدسی بتابانیم، ملاحظه میکنیم که پرتو بدون انحراف از مسیر اولیه، از طرف دیگر عدسی خارج میشود.
هر گاه یک دسته پرتو موازی با محور اصلی بر سطح عدسی بتابانیم، پرتوها بعد از شکست در عدسی و عبور از آن در طرف دیگر ، در یک نقطه روی محور اصلی همدیگر را قطع میکنند. این نقطه را کانون عدسی محدب میگویند. بدیهی است که عدسی باید دارای دو کانون باشد. چون از هر دو طرف میتوان پرتوها را بر سطح آن تابانید. فاصله این نقطهها از عدسی را فاصله کانونی عدسی گویند. در عدسیهای محدب فاصله کانونی را مثبت فرض میکنند.
فرض کنید یک عدد شمع روشن بصورت عمود بر محور اصلی و به فاصله معین P از آن قرار دارد. حال اگر از انتهای شمع خطی را بصورت موازی با محور اصلی عدسی بر سطح آن رسم کنیم، این خط با فرض اینکه بیانگر یک پرتو نوری است، باید بعد از عبور از عدسی در طرف دیگر ، از کانون بگذرد. حال خط دوم یا پرتو دوم را بر مرکز نوری عدسی میتابانیم. بدیهی است که این پرتو ، پرتو اولیه را در یک نقطه قطع میکند. حال اگر از این نقطه عمودی بر سطح محور اصلی رسم کنیم، خط حاصل بیانگر تصویر شمع در عدسی محدب خواهد بود.
در همه انواع عدسیها اگر فاصله شی از عدسی را P و فاصله تصویر از عدسی را q و فاصله کانونی را f فرض کنیم، فرمول عدسی بصورت زیر خواهد بود.
بدیهی است که علامت کمیتهای فوق در صورت مجازی بودن منفی و در صورت حقیقی بودن مثبت است. اما در عدسیهای محدب فاصله کانونی همیشه مثبت است.
کلمات کلیدی: اپتیک
عدسی اسبابی نوری است که دارای دو سطح شکننده پرتو است. معمولی ترین عدسیها از دو سطح کروی تشکیل شده است، که فاصله این دو سطح در مقایسه با ابعاد دیگر عدسی بسیار کوچک است. عدسیها میتوانند با توجه به نوع قرار گرفتن سطوح کروی به صورت عدسی واگرا یا مقعر و عدسی همگرا یا محدب باشند. در عدسی مقعر ، اگر پرتوهای موازی به این عدسی بتابانیم، بعد از شکست از هم دور شده و به اصطلاح واگرا میشوند. به همین دلیل این نوع از عدسیها را واگرا نیز میگویند. معمولا لبه این نوع عدسیها پهن تر از وسط آن است و به شکلهای مختلف دو کاو ، کاو تخت و هلالی واگرا ساخته میشوند.
گفتیم عدسی از دو سطح کروی تشکیل شده است. بنابراین هر سطحی که قسمتی از آن یک کره کامل است، دارای یک مرکز خواهد بود. حال اگر بوسیله خطی مراکز این دو سطح کروی را به یکدیگر وصل کنیم، خط حاصل را محور اصلی میگویند. نقطه میانی عدسی را که روی محور اصلی قرار دارد، مرکز نوری عدسی مینامند. اگر پرتوی را به مرکز نوری عدسی بتابانیم، این پرتو بدون انحراف از عدسی خارج میشود.
اگر یک دسته پرتو را موازی با محور اصلی بر سطح آن بتابانیم، پرتوها بعد از شکست در عدسی و عبور از آن طوری از هم دور میشوند که امتداد آنها از یک نقطه روی محور اصلی بگذرند. یعنی این پرتوها بعد از عبور از عدسی از هم فاصله میگیرند. حال اگر امتداد این پرتوها را رسم کنیم، در یک نقطه روی محور اصلی همدیگر را قطع میکنند. این نقطه را کانون عدسی میگویند. با توجه به اینکه میتوان دسته پرتوهای نور از طرف (راست یا چپ) بر سطح آن تابانید ، لذا عدسی دارای دو کانون است. فاصله کانون از مرکز نوری را فاصله کانونی میگویند. هر گاه پرتو نور طوری به یک عدسی مقعر بتابد که بعد از برخورد به عدسی ، امتداد آن را از کانون بگذرد، پرتو شکست آن موازی محور اصلی خواهد بود. فاصله کانونی عدسی مقعر چون منفی در نظر گرفته میشود، لذا عدسی مقعر را عدسی منفی نیز میگویند.
فرض کنید شئی بصورت عمودی با ارتفاع y که از ارتفاع عدسی بیشتر نیست، برروی محور اصلی قرار دارد. از انتهای این شی دو پرتو ، یکی به صورت موازی با محور اصلی و دیگری به مرکز نوری عدسی رسم میکنیم. میدانیم که هرگاه پرتوی به مرکز نوری عدسی بتابد، بدون انحراف در همان جهت اولیه خود از آن خارج میشود. اما پرتوی که به صورت موازی به سطح عدسی میتابد، در طرف دیگر واگرا میگردد. اگر امتداد این پرتو را رسم کنیم، در طرف شی ، پرتو اول را که به مرکز نوری رسم شده است، در یک نقطه قطع میکند. حال اگر از این نقطه خطی عمود بر محور اصلی رسم کنیم، خط حاصل تصویر شی خواهد بود.
در مورد عدسیهای مقعر اگر فاصله شی تا عدسی را با P و فاصله تصویر از عدسی را با q و فاصله کانونی را با f نشان دهیم، در این صورت فرمول عدسیهای مقعر به صورت زیر در میآید.
در همه عدسیها نسبت بزرگی تصویر به بزرگی شی را به عنوان بزرگنمایی تعریف میکنند. به عنوان مثال اگر y طول شی و ´Y طول تصویر باشد، بزرگنمایی برابر خواهد بود.
کلمات کلیدی: اپتیک
کاربرد لیزر در ارتباط نوری
استفاده از باریکه لیزر برای ارتباط در جو به خاطر دو مزیت مهم اشتیاق زیادی برانگیخت:
:الف) اولین علت دسترسی به پهنای نوار نوسانی بزرگ لیزر است. زیرا مقدار اطلاعات قابل انتقال روی یک موج حامل متناسب با پهنای نوار آن است. فرکانس موج حامل از ناحیه میکروموج بخ ناحیه نور مرئی به اندازه 104 برابر افزایش می یابد و در نتیجه امکان استفاده از یک پهنای بزرگتر را به ما می دهد.
:ب) علت دوم طول موج کوتاه تابش است. چون طول موج لیزر نوعا حدود 104 مرتبه کوچکتر از امواج میکرو موج است با قطر روزنه یکسان D واگرایی امواج نوری به اندازه 104 مرتبه نسبت به واگرایی امواج میکرو موج کوچکتر است. بنابراین برای دستیابی به این واگرایی آنتن یک سیستم اپتیکی می تواند به مراتب کوچکتر باشد.
اما این دو امتیاز مهم با این واقعیت خنثی می شوند که باریکه نوری تحت شرایط دید ضعیف در جو به شدت تضعیف می شود. در نتیجه استفاده از لیزرها در ارتباطات فضای باز (هدایت نشده) فقط در مورد این موارد توسعه یافته اند:
:الف) ارتباطات فضایی بین دو ماهواره و یا بین یک ماهواره و یک ایستگاه زمینی که در یک شرایط جوی مطلوب قرار گرفته است. لیزرهایی که در این مورد استفاده می شوند عبارتند از :
Nd:YAG ( با آهنگ انتقال 109 بیت در ثانیه ) و یا CO2 با آهنگ انتقال 3*108 بیت در ثانیه ). گرچه CO2 نسبت به Nd: YAG دارای بازدهی بالاتری است و لی دارای این اشکال است که نیاز به سیستم آشکارسازی پیچیده تری دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.
:ب) ارتباطات بین دو نقطه در یک مسافت کوتاه مثلا انتقال اطلاعات درون یک ساختمان. برای این منظور از لیزرهای نیمرسانا استفاده می شود.
اما زمینه اصلی مورد توجه در ارتباطات نوری مبتنی بر انتقال از طریق تارهای نوری است. انتقال هدایت شده نور در تارهای نوری پدیده ای است که از سالها پیش شناخته شده است اما تارهای نوری اولیه فقط در مسافت های خیلی کوتاه مورد استفاده قرار می گرفتند مثلا کاربرد متعارف آن ها در وسایل پزشکی برای اندوسکوپی است. بنابراین در اواخر سال 1960 تضعیف در بهترین شیشه های نوری در حدود 1000 دسی بل بر کیلومتر بود. از آن زمان پیشرفت تکنیکی شیشه و کوارتز باعث تغییر شگفت انگیز در این عدد شده است به طوری که این تضعیف برای کوارتز به 5/0 دسی بل بر کیلومتر رسیده است. این تضعیف فوق العاده کوچک آینده مهمی را برای کاربرد تارهای نوری در ارتباطات راه دور نوید می دهد
سیستم ارتباطات تارهای نوری نوعا شامل یک چشمه نور یک جفت کننده نوری مناسب برای تزریق نور به تارها و درانتها یک فوتودیود است که باز هم به تار متصل شده است. تکرار کننده شامل یک گیرنده و یک گسیلنده جدید است. چشمه نور سیستم اغلب لیزرهای نیمرسانای نا هم پیوندی دوگانه است. اخیرا طول عمر این لیزرها تا حدود 106 ساعت رسیده است. گرچه تا کنون اغلب از لیزر گالیم ارسنید GaAs استفاده شده است ولی روش بهتر استفاده از لیزرهای نا هم پیوندی است که در آنها لایه فعال ترکیبی از آلیاژ چهارگانه به صورت In1-x Gax Asy P1-y است. در این حالت لبه های P ,n پیوندگاه از ترکیب دوگانه InP تشکیل شده است و با استفاده از ترکیب y=2v2x می توان ترتیبی داد که چهار آلیاژ چهارگانه شبکه ای که با InP جور شود با انتخاب صحیح x طول موج تابش را طوری تنظیم کرد که در اطراف µm 3/1 و یا اطراف 6/1 µm واقع شود که به ترتیب مربوط به دو مینیموم جذب در تار کوارتز هستند. بسته به قطر d هسته مرکزی تار ممکن است از نوع تک مدباشد برای آهنگ انتقال متداول فعلی حدود 50 مگابیت در ثانیه معمولا از تارهای چند مدی استفاده می شود. برای آهنگ انتقال های بیشتر تارهای تک مدی مناسبتر به نظر می رسند. گیرنده معمولا یک فوتو دیود بهمنی است اگر چه ممکن است از یک دیود PIN و یک دیود تقویت کننده حالت جامد مناسب نیز استفاده کرد.
کلمات کلیدی: اپتیک
|
ماهیت فیزیکی
اجسام معمولی هنگام برخورد با یکدیگر گرم میشوند و گاهی گرمای تولید شده به قدری است که به آسانی میتوان آن را حس نمود. الکترونها نیز هنگام برخورد با مواد ، گرما تولید میکنند و انرژی جنبشی آنها در هنگام تبدیل به انرژی گرمایی شده و دمای جسم افزایش مییابد. برای آنکه این انرژی سبب ذوب یا تبخیر مواد شود، الکترونها باید انرژی لازم برای این کار را داشته باشند. در اینجا درباره چگونگی تولید الکترونها ، افزایش انرژی آنها ، نحوه حرکت و چگونگی متمرکز ساختن آنها بر روی ماده مورد نظر ، ضمن تشریح اجزای تفنگ الکترونی بحث میشود.
![]() |
یک تفنگ الکترونی از یک چشمه تولید الکترون ، یک میدان الکتریکی مناسب و بوته نگهداری ماده تبخیر شونده تشکیل شده است. چشمه تولید الکترون ، یک سیم داغ از جنس تنگستن میباشد. فلزات بر اثر گرم شدن از خود ، الکترون آزاد میکنند. اثر ادیسون و میزان الکترونهای تولید شده از رابطه ریچاردسون داشمن بدست میآید:
وقتی از یک سیم تنگستن جریان چند آمپری عبور میکند، سیم داغ شده و بنا بر آنچه بیان شد الکترونها آزاد میشوند و الکترونهای تولید شده در اطراف سیم سرگردان میمانند مگر بوسیله یک اختلاف پتانسیل چند هزار ولتی به آنها انرژی داده شود تا به سمت یک هدف معین (ماده تبخیر شونده) شتاب بگیرند. اگر این ولتاژ را V بنامیم انرژی هر الکترون eV داده خواهد بود که از نوع انرژی پتانسیل است و سبب حرکت آن به سمت آند شده و تبدیل به انرژی جنبشی میشود. هنگام برخورد با آند تبدیل به انرژی گرمایی میشود. حرکت این الکترونها به سمت آند ایجاد جریان الکتریکی مینماید که از معادله چاید لانلمیر بدست میآید:
I = PV1/2
P مقدار ثابتی است که بستگی به پارامترهای مختلف از جمله ابعاد ثابتی است که بستگی به پارامترهای مختلف از جمله ابعاد هندسی تفنگ الکترونی دارد. V همان ولتاژ آند است که در حدود چند هزار ولت میباشد. تفنگ الکترونی با توان بالا قابلیت تبخیر اجسام دیرگداز را دارد. تنگستن که در حدود 3400 ºC ذوب میشود بوسیله یک تفنگ الکترونی 2KW قابل تبخیر است.
تفنگهای الکترونی با توانهای بالاتر نیز ساخته شدهاند. تقریبا تمام تفنگهای الکترونی نیاز به یک سیستم چرخان آب برای سرد کردن بوته حاوی ماده تبخیر شونده دارد زیرا در غیر اینصورت بوته نیز بر اثر گرمای زیاد ذوب میشود. برای آنکه پرتوهای الکترونی پرانرژی با سطوح جانبی بوته و سرد کردن برخورد نکنند و انرژی آنها هدر نرود از سیستمهای مختلف برای متمرکز کردن آنها روی ماده تبخیر شونده استفاده میشود.
یک سیستم ساده استفاده از محافظ الکتریسیته ساکن است که بطور ساده از یک توری استوانهای تشکیل شده و بوته را احاطه میکند. این محافظ الکترونهای اولیه پرتاب شده را جذب کرده و ولتاژ منفی بالایی پیدا میکند بطوری که بقیه الکترونها را از خود دفع کرده و در محل بوته متمرکز میکند و به این ترتیب طرح تفنگ الکترونی مفیدتر و سبب افزایش کارایی سیستم میشود.
تفنگهای الکترونی در توانهای مختلف ساخته میشوند. سپس مواد دیرگدازی که ، به روشهای دیگر قابل تبخیر نیستند با تفنگهای الکترونی توان بالا ، قابل تبخیر میباشند. زیرا ماده بطور مستقیم بوسیله پرتو الکترونی گرم میشود و نیاز به بوته دیرگداز نیست علاوه بر آن بوته با آب خنک میشود.
همین مطلب یعنی گرمایش مستقیم بوسیله الکترونها سبب میشود لایههای نازک ایجاد شده عاری از هر نوع آلودگی باشند که در کارهای حساس اپتیکی و فیلترهای اپتیکی از تفنگ الکترونی برای تبخیر مواد استفاده میشود. ادوات الکترونیک ، حافظه مغناطیسی و اپتیکی استفاده میشود. این روش یکی از متداولترین روشهای نشاندن لایههای رسانا و دیالکتریک در محصولات الکترونیکی مانند مدارات مجتمع MCM , VLSI است.
کلمات کلیدی: فیزیک نوین
|
ریشه لغوی
میکروسکوپ به معنی کپی یا ثبت کوچکتر ذره است و ریشه در زبان لاتین دارد و از آن برای بررسی ذرات اتمی و زیر اتمی استفاده میشود.
میکروسکوپ الکترونی نوعی میکروسکوپ مرکب است. اولین میکروسکوپ مرکب ، احتمالا در سالهای 1600 میلادی توسط دو نفر هلندی به نام هانس و زاکاریاس جنس ساخته شد. درسال 1873 ارنست آبه ثابت کرد که برای تشخیص دقیق دو ذره نزدیک به هم ، طول موج نور نباید بیشتر از دو برابر فاصله دو ذره از یکدیگر باشد. بالاخره درسال 1939 اولین میکروسکوپ الکترونی ساخته شد.
![]() |
میکروسکوپهای اولیه که میکروسکوپ ساده نام داشت، شامل فقط یک عدسی بودند اما میکروسکوپ الکترونی ، که میکروسکوپ مرکب است از ترکیب حداقل دو عدسی بوجود آمده است. در طول قرن هیجدهم میکروسکوپ در زمره وسایل تفریحی به شمار میآمد. با پژوهشهای بیشتر پیشرفتهای قابل توجهی در شیوه ساختن عدسی شئی حاصل شد. بطوری که عدسیهای دیگر یصورت ذره بینهای معمولی نبودند بلکه خطاهای موجود در آنها که به کنجهایی معروف هستند، دفع شدهاند و آنها میتوانستند جرئیات یک شی را دقیقا نشان دهند. پس از آن در طی پنجاه سال ، پژوهشگران بسیاری تلاش کردند تا بر کیفیت و مرغوبیت این وسیله بیافزایند. بالاخره ارنست آبه توانست مبنای علمی میزان بزرگنمایی میکروسکوپ را تعریف کند.
بدین ترتیب میزان بزرگنمایی مفید آن بین 50 تا 2000 برابر مشخص شد. البته میتوان میکروسکوپهایی با بزرگنمایی بیش از 2000 برابر ساخت. مثلا قدرت عدسی چشمی را بیشتر کرد. اما قدرت تفکیک نور ثابت است و درنتیجه حتی بزرگنمایی بیشتر میتواند دو نقطه از یک شی را بهتر تفکیک کند. هر چه بزرگنمایی شی افزایش یابد به میزان پیچیدگی آن افزوده میشود. بزرگنمایی شی در میکروسکوپهای تحقیقاتی جدید معمولا 3X ، 6X ، 10X ، 12X ، 40X و 100X است. در نتیجه بزرگنمایی در این میکروسکوپ بین 18 تا 1500 برابر است. چون بزرگنمایی میکروسکوپ نوری از محدوده معینی تجاوز نمیکند برای بررسی بسیاری از پدیدههایی که احتیاج به بزرگنمایی خیلی بیشتر دارند مفید است. تحقیقات بسیاری صورت گرفت تا وسیله دقیق تری با بزرگنمایی بیشتر ساخته شود. نتیجه این پژوهشها منجر به ساختن میکروسکوپ الکترونی شد.
![]() |
میکروسکوپ مرکب از یک لوله تشکیل شده که در دو انتهای آن دو عدسی شئی نزدیک به شی مورد مطالعه و عدسی چشمی قرار دارد. تصویری که توسط عدسی شئی بوجود میآید، بوسیله عدسی چشمی بزرگتر میشود. به این جهت بزرگنمایی آن بیش از قدرت یک عدسی است. در میکروسکوپهای پیشرفته ، دستگاه نوری پیچیده تر است. بدین ترتیب که در آنها علاوه بر لامپ ، یک کندانسور (مجموعه عدسیهای متمرکز کننده نور) و یک دیافراگم که شدت نور را کنترل میکند، قرار داده شده است. لامپی که در این نوع میکروسکوپها مورد استفاده قرار میگیرد، با ولتاژ کم کار میکند. لامپهای فراوانی برای این منظور وجود دارند که هرکدام نوری با شدت و طول موج مورد نظر تامین میکنند. بنابراین برای تفکیک دو نقطه نزدیکتر از 2500 آنگستروم باید از میکروسکوپ الکترونی استفاده کرد.
زیرا طول موج الکترون از طول موج نور کمتر است. اولین میکروسکوپ الکترونی که ساخته شد، درست مانند میکروسکوپ نوری که شعاع نور را از داخل نمونه مورد مطالعه عبور میدهد، شعاع الکترون را از داخل مقطع بسیار نازکی عبور میدهد. چون تراکم مواد در تمام قسمتهای نمونه مورد مطالعه یکسان نیست، میزان الکترونی که از قسمتهای مختلف عبور میکند متفاوت است. درنتیجه تصویری از قسمتهای تاریک و روشن آن بدست میآید. میکروسکوپ الکترونی دارای یک قسمت لولهای شکل است که الکترون میتواند آزادانه از آن عبور کند. در قسمت بالای لوله یک قطب منفی الکتریکی به شکل رشته سیم نازک وجود دارد که جنس آن از تنگستن است. این قسمت آنقدر حرارت داده میشود تا بتواند از خود الکترون آزاد کند.
این عمل با ایجاد اختلاف پتانسیل از 20000 تا 100000 ولت بین کاتد و آند صورت میگیرد. در نتیجه یک شعاع الکترونی بسوی پایین قسمت لولهای شکل شتاب داده میشود. به این سیستم تفنگ الکترونی میگویند. در طول لوله عدسیهایی همگرا اندازه و روشنایی شعاع الکترونی را قبل از برخورد با نمونه مورد مطالعه کنترل میکنند. مقطع مورد بررسی روی یک صفحه مشبک دایره شکلی قرار داده میشود. شعاع الکترونی پس از عبور از مقطع و قبل از این که به حد بزرگنمایی نهایی برسد، از میان عدسیهایی شئی عبور کرده و تنظیم میشود. سپس توسط عدسیهایی بر روی صفحه زیر میکروسکوپ منعکس میشود. چگالی بزرگنمایی بیشتر میکروسکوپها از 50 تا 800000 برابر است. صفحه زیر میکروسکوپ از مواد فسفردار (فسفید روی) پوشانیده شده که در مقابل پرتو الکترون از خود نور تولید میکند. در زیر این صفحه یک دوربین عکاسی قرار دارد که از تصویر روی صحنه عکس میگیرد.
کلمات کلیدی: فیزیک نوین