در سال 1592 ، هنگامی که در صورت فلکی ذات الکرسی ستاره جدیدی با روشنی قابل توجه ، مشاهده شد، نجوم اروپایی از خواب طولانی برخاسته بود. تیکو براهه جوان ستاره جدید را به دقت رصد کرد و کتاب نواختران (Denous Stella) را نوشت. بر اساس نام این کتاب است که هر ستاره جدید را نواختر خواندهاند.
![]() |
هسته ستاره ابرغول در حال مرگ در کمتر از یک ثانیه فرو بپاشد. این فروپاشی ناگهانی سبب میشود که موجی ضربهای ایجاد شود که لایههای بیرونی ستاره را به بیرون میاندازد. |
قابل توجهترین نواختری که پس از اختراع تلسکوپ ظاهر شد ستارهای بود که ارنست هارویک (Ernest Hanwrg) اخترشناس آلمانی ، در سال 1885 در کهکشان امراة المسلسه کشف کرد و به آن نام امراة المسلسه S داده شد. اگر این ستاره کمی روشن بود، با چشم غیر مسلح نیز دیده میشد. در آن زمان کسی نمیدانست که کهکشان مزبور چقدر دور است یا چقدر بزرگ است. اما پس از نتیجه گیریهای هابل درباره فاصله این کهکشان ، ناگهان روشنایی نواختری که در سال 1885 ظاهر شده بود، اخترشناسان را دچار حیرت کرد. این نو اختر میبایست 10000 برابر روشنتر از نواختران معمولی باشد. این یک ابر نواختر (Super nova) بود.
رفتار فیزیکی ابر نواختران آشکارا با رفتار فیزیکی نواختران متفاوت است و اخترشناسان به بررسی جزئیات طیفهای آنها مشتاقند. اشکال اصلی این است که ابر نواختران کمیاب هستند. به عقیده تسویکی ، در هر هزار سال بطور متوسط سه ابر نواختر در کهکشان ظاهر میشود. روشنایی یک ابر نواختر (با قدرمطلقهایی از مرتبه 14- و بطور تصادفی 17-) فقط میتواند نتیجه یک انفجار کامل یعنی تکه تکه شدن یک ستاره ، باشد.
زندگی هر ستاره ابر غول دارای بیش از 10 برابر جرم خورشیدی در انفجاری عظیم به نام ابرنواختر پایان مییابد. این انفجار آنچنان پر انرژی است که شاید از کهکشان کاملی با میلیاردها ستاره ، درخشندهتر شود. شاید تا مدتی از دید ناظر زمینی این ابر نواختر به صورت ستاره تازه و خیلی درخشان به نظر برسد. اگر از این انفجار ، هستهای با 1.4 الی 3 جرم خورشیدی بجای ماند، هسته کوچک میشود و ستاره نوترونی تشکیل میدهد. اگر جرم هسته از 3 برابر جرم خورشیدی بیشتر باشد، جاذبه آن را وا میدارد که بیشتر منقبض شود تا حفره سیاه تشکیل بدهد.
انرژی که از انفجار هر ابرنواختر آزاد میشود، میتواند دهها هزار سیاره نظیر زمین را ویران کند. همگی ابر نواخترها ویرانگر نیستند، ولی این انفجارها عناصر بوجود آمده در درون ستارگان را در فضای میان ستارهای منتشر میکنند تا در آنجا به ستارگان و سیارات تازه تبدیل شوند. اتمهای کربن که بخشی از مولکولهای تشکیل دهنده اکثر غذاها و بدنمان هستند، برای نخستین بار در داخل ستارگان ایجاد شدهاند.
به رغم درخشندگی شدید ، در هر قرن فقط دو یا سه ابر نواختر در کهکشانمان مشاهده میشوند. این فهرست برخی از ابرنواخترهای شناخته شده است:
ابر نواختر | صورت فلکی |
ستاره تیکو | ذات الکرسی |
ستاره کپلر | حوا |
سحابی سرطان | ثور |
اس.ان A 1987 | ابر ماژلانی بزرگ |
اس.ان J 1993 | کهکشان M 81 در دب اکبر |
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
|
نگاه اجمالی
در طول زندگی انسان ، ستارگان بیشمار راه شیری ، عملا بیتغییر به نظر میرسند. گاهی ، یک نواختر ، ناگهان ظاهر آشنای یک صورت فلکی را به مدت چند هفته عوض میکند و دوباره کمنورتر میشود. منظره زیبایی که درخشش یک ابرنواختر در آسمان پدید میآورد، بسیار نادر است. در سال 1054 میلادی (433 شمسی) مردم شاهد چنین منظرهای بودند. یک ابر اختر در صورت فلکی ثور منفجر شد که سحابی خرچنگ ، بقایای آن است. ستارگان متغیر با نور ثابتی نمیدرخشند.
![]() |
تحول یک ستاره
ستارگان نیز نهایتا تغییر میکنند و هیچ کدام تا ابد پایدار نمیمانند. آتش زغال ، با خاکستر شدن آخرین شراره خاموش میشود. ستاره هنگامی میمیرد که انبار عظیم سوخت هستهای آن به پایان رسد. حتی امروزه نیز ستارگان پیری را میبینیم که تاریک میشوند. در حالی که ستارگان دیگر تولد مییابند تا جایگزین آنها شوند.
ستارگان بسیار جوان ، هنوز در میان گازهایی پنهان هستند که از آن شکل میگیرند. درون سحابی جبار ، نخستین سوسوی نور ستارگان نوزاد دیده شده است. خورشید ما ، سنین میانی خود را به آرامی میگذاراند. برخی از پیرترین ستارگان شناخته شده در خوشههای کروی جای دارند.
شاید بپرسید که محاسبه عمر ستارگان ، چگونه امکانپذیر است. هیچ کس نمیتواند رشد یک ستاره منفرد را از تولد تا مرگ آن دنبال کند، ولی خیال کنید که هیچگاه درخت ندیدهاید و ناگهان شما را به وسط جنگلی بردهاند، چه پیش میآید؟ درختان گوناگونی خواهید دید که در مراحل مختلف رشد خود هستند: از جوانههای کوچک تا درختان غول پیکر. اگر اندکی زیست شناسی بدانید، میتوانید به چرخه حیات یک درخت پی ببرید. اختر شناسان به روشی مشابه ، با استفاده از قوانین فیزیک و رصد گونههای مختلف ستارگان ، سلسله حوادث زندگی یک ستاره را نتیجه میگیرند.
بعد از آنکه ستاره شکل میگیرد، بلافاصله حیاتی پایدار بدست میآورد. در همین زمان ، واکنشهای هستهای در داخلیترین هسته ستاره ، هیدروژن را به هلیوم تبدیل میکند و انرژی آزاد میشود. سرانجام ، هم هیدروژن درون آن به مصرف میرسد. از این به بعد ، تغییراتی در لایههای درونی ستاره آغاز میشود. در حالی که واکنشهای جدیدی از هلیوم شروع میشوند، لایههای بیرونی باد میکنند تا ستاره را به اندازه غول برسانند.
![]() |
|
کوتولهها
در اثر تغییرات زیاد ، ستاره به مرحله متغیر بودن میرسد. نهایتا هیچ منبع ممکن برای آزاد سازی انرژی باقی نمیماند. ستارگان کوچکتر ، در اثر انقباض تبدیل به کوتولههای سفید میشوند. ستارگان سنگینتر بهصورت ابرنواختر منفجر میشوند. ماده بیرون ریخته از یک نواختر ، بخشی از گاز بین ستارهای را تشکیل میدهد که زادگاه ستارگان جدید است.
ستارگان در یکی از آخرین مراحل زندگی خود ، پیش از آنکه به کوتوله سفید تبدیل شوند، منظره بسیار زیبایی در آسمان بوجود میآورند. این مرحله ، پیدایش سحابیهای سیارهای است. شکل منظم و رنگهای زیبا ، سبب جذابیت آنها میشود (هیچ رابطهای بین سحابیهای سیارهای و سیارات وجود ندارد. این اصطلاح یادگار رصدهای قدیم تلسکوپی است که شکل دایره آنها با سیارهها اشتباه میشد.). یک سحابی سیارهای هنگامی شکل میگیرد که ستاره مرکزی آن ، لایهای به بیرون پرتاب میکند. لایه گاز همانند حلقهای از دود منبسط میشود.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
برای اینکه بتوانیم در یک محیط ، میدان مغناطیسی برقرار کنیم، باید مقداری انرژی صرف کنیم. این انرژی در میدان ذخیره شده و تحت عنوان انرژی مغناطیسی از آن تعبیر میشود. این مطلب از قانون القای فاراده به صورت مستقیم نتیجه میشود. |
هرگاه یک منبع ولتاژی را که قادر به ایجاد ولتاژی به اندازه V است، به مداری متصل کنیم، در این مدار جریان الکتریکی برقرار میشود، اما هر ماده دارای یک مقاومت الکتریکی میباشد، بنابراین مجموع ولتاژ چشمه و نیروی محرکه القایی در مدار با حاصلضرب مقاومت مدار در جریانی که از آن میگذرد، برابر خواهد بود و چون جریان را به صورت مشتق زمانی بار الکتریکی تعریف میکنند، بنابراین میتوان گفت که چشمه ولتاژ یا باتری مقداری کار انجام میدهد تا مقداری بار الکتریکی را در مدار انتقال دهد.
مقداری از این کار انجام شده توسط منبع ولتاژ یا انرژی تزریق شده به مدار و مقداری هم به صورت گرما تلف میشود. این انرژی برگشت ناپذیر است. مقدار دیگری از انرژی نیز صرف تغییر شار در مدار میشود، یعنی این جمله دوم کاری است که علیه نیروی محرکه القا شده در مدار انجام میشود. بنابراین اگر در یک مدار صلب و ساکن که بجز اتلاف گرمای ژول هیچ انرژی دیگری از دست نمیدهد، کار انجام شده توسط باتری با تغییر انرژی مغناطیسی مدار برابر خواهد بود.
در بحث الکتریسیته به مجموع چند مقاومت و خازن یا قطعات دیگر الکترونیکی که به یک منبع ولتاژ وصل شده باشد، مدار الکتریکی میگویند. در بحث مغناطیس به مجموعه سیم پیچی که بر اطراف حلقهای از یک ماده مغناطیسی پیچیده شده باشد، مدار مغناطیسی میگویند.
حال فرض کنید که دستگاهی متشکل از تعدادی مدار که با یکدیگر برهمکنش دارند، داشته باشیم. برای اینکه بتوانیم انرژی مغناطیسی این دستگاه را بیان کنیم، فرض میکنیم در حالت اول کلیه این مدارها بدون جریان هستند و ما تمام جریانها را بطور هماهنگ به مقدار نهاییشان میرسانیم، یعنی در هر لحظه از زمان تمام جریانها کسر یکسانی از مقدار نهایی خود را دارند. البته این امر تنها زمانی درست است که مدارها صلب بوده و محیطهای موجود خطی باشند، تا انرژی نهایی به ترتیب تغییر جریانها بستگی نداشته باشد.
بنابراین اگر جریان هر مدار را با I_i و شار مغناطیسی القا شده در آن را با Ф_i نشان دهیم، به رابطه زیر خواهیم رسید:
که n تعداد مدارها میباشد. البته این رابطه را میتوان برحسب القا متقابل مدارها نوشت.
رابطهای که در قسمت قبلی برای انرژی مغناطیسی مدار محاسبه شد، رابطه مفید است، چون پارامترهای موجود در آن را میتوان با اندازه گیری مستقیم بدست آورد. از طرف دیگر ، میتوان انرژی را برحسب میدانهای برداری مغناطیسی و بردار شدت میدان مغناطیسی بیان کرد. در این صورت چون رابطه گویاتر است و تصویری را عرضه میکند که در آن انرژی در خود میدان مغناطیسی ذخیره شده است، لذا این بیان مفیدتر است.
این رابطه نسبت به رابطه قبلی کلیتر میباشد و اگر محیط مورد نظر ما یک محیط خطی باشد، یعنی بتوانیم با داشتن یکی از مقادیر شدت میدان مغناطیسی (H) یا القا مغناطیسی (B) یکی را برحسب دیگری محاسبه کنیم، به راحتی میتوانیم مقدار انرژی ذخیره شده در آن مدار را با استفاده از حل یک انتگرال ساده از رابطه زیر محاسبه کنیم:
که در آن ضرب موجود از نوع ضرب عددی یا اسکالر است و انتگرال روی حجم مدار انجام میگیرد.
تابع انتگرال (یا سیگما) که در رابطه مربوط به انرژی مغناطیسی ظاهر میگردد، یک انتگرال حجمی است که روی تمام نقاط فضا گرفته میشود و لذا بدیهی است که میتوانیم انرژی واحد حجم را به عنوان چگالی انرژی مغناطیسی تعریف کنیم، یعنی اگر چگالی انرژی را با μ نشان دهیم، در این صورت خواهد بود.
در مورد خاص اجسام مغناطیسی همسانگر و خطی که بین H و B یک رابطه خطی وجود دارد، یعنی است که در آن μ تراوایی مغناطیسی ماده میباشد، لذا رابطه چگالی انرژی به فرم ساده زیر در میآید:
کلمات کلیدی:
میدان مغناطیسى زمین همانند پوست پیاز کره خاکى ما را در برگرفته است. توفانهاى خورشیدى آن را مورد حمله قرار داده و موجب بروز توفانهاى الکتریکى در آن مىگردند. این توفانها نیز متعاقبا بر روى سیستمهاى الکتریکى زمین اثر مىگذارد. اگر چه میدان مغناطیسى زمین کره خاکى ما را از توفانهاى خورشیدى و تشعشعات فضایى حفظ مىکند، اما متأسفانه این میدان مغناطیسى به تدریج در حال ضعیفتر شدن بوده و عواقب حاصل از آن مایه نگرانى کارشناسان امر است.
![]() |
در دهه 80 میلادی رسانههاى گروهى از وقوع انفجارات شدید در خورشید (در منظومه شمسى) خبر داده و متذکر شدند در اثر این انفجارات ، تشعشعات خطرناکى وارد جو زمین شده و ذرات الکتریکى باردار آن براى همگان مضر خواهد بود. در این گزارشها از قطع ارتباطات رادیویى در سراسر جهان ، از کار افتادن ماهوارهها و سیستمهاى برق رسانى سخن میرفت. این نگرانىها همه به حق بودند. پس از انفجارهاى شدید خورشیدى که 14 سال پیش صورت گرفتند ابرى از ذرات باردار پر انرژى (این ذرات باردار در زبان فیزیکدانان ، پلاسما نامیده مىشود) با قدرتى 1700 بار بیشتر از روزهاى معمولى ، بسوى سیاره ما وزیدن گرفت.
در آن زمان دانشمندان از این بیم داشتند که اگر توفان حاصل از این ذرات پر انرژى به میدان مغناطیسى زمین برسند، در میدان مغناطیسى ، شدت جریان الکتریکى آنچنان زیاد خواهد بود که تقریبا تمامى فیوزهاى سیستمهاى الکتریکى از کار خواهند افتاد. خوشبختانه این فاجعه عظیم به وقوع نپیوست. تنها برخى از فرکانسهاى رادیویى دچار اشکال پخش شدند و کار بعضى از ماهوارهها بصورت موقت و از روى احتیاط متوقف شد.
کارشناسان به این نتیجه رسیدند که میدان مغناطیسى زمین ، سپر دفاعى نامرئى ما در برابر توفانهاى خورشیدى و تشعشعات فضایى بوده است. با این وجود نقش پروتونها و ذرات آلفا در این تشعشعات و همچنین نقش میدان مغناطیسى زمین هنوز هم معماهاى بسیارى را در خود نهفته دارند. اما اصولا چرا کره زمین از دو قطب مغناطیسى برخوردار است؟ چه چیزى باعث مىشود که زمین همانند یک میله مغناطیسى عظیم ، آنطور که همه ما آ ن را از کلاسهاى درس فیزیک مىشناسیم، عمل کند؟ چرا عقربه یک قطب نما همیشه جهت شمال و جنوب مغناطیسى را بر روى زمین نشان مىدهد؟ (این مسئله هزاران سال پیش توسط چینیها کشف شد.)
شاید بد نباشد توضیح دهیم که حتى تا قرن شانزدهم میلادى هم بسیارى از مردم معتقد بودند که یک کوه عظیم مغناطیسى در شمال زمین وجود دارد. متخصصان رشتههاى فیزیک و زمین شناسى تنها چند دهه پیش بود که تئورى دیگرى را ارائه کردند و این تئورى تازه ، در انستیتوى تحقیقاتى شهر کارلسروهه مورد تأیید قرار گرفت. طبق این تئورى تقریباً 95 درصد از میدان مغناطیسى زمین از طریق یک ماشین دینام یا در حقیقت ژنراتورى که با کمک اثر مغناطیسى ، انرژى الکتریکى تولید مىکند، در ماده مذاب قشر بیرونى هسته زمین که کلاً از آهن تشکیل شده است تولید مىشود. در این قشر ، جریانهایى بوجود مىآیند که بر اثر چرخش کره زمین شکلى مارپیچ به خود مىگیرند.
آزمایشهاى انجام گرفته نشانگر آنند که این جریانهاى مارپیچ ، واقعاً یک میدان مغناطیسى را بوجود مىآورند. میدان مغناطیسى درونى زمین بر جریانهاى الکتریکى خارجى در یونسفر جو زمین اثر گذاشته و به این ترتیب در برابر توفانهاى خورشیدى و تشعشعات زیان آور ذرات الکتریکى نقش حفاظ را بازى مىکند.
البته این میدان مغناطیسى همانند میدان مغناطیسى زمین که دائماً ضعیفتر مىشود، از یک ثبات دائمى برخوردار نیست. علاوه بر این ، بررسى سنگهاى کره زمین نشان مىدهد که پس از بروز یک چنین ضعفى در میدان مغناطیسى زمین ، تقریباً هر 750 هزار سال یک بار ، محل قطبهاى شمال و جنوب مغناطیسى تغییر مىکند. اما بر اساس محاسبات کنونى این تغییر محل قطبهاى مغناطیسى زمین حدوداً 500 سال دیگر انجام خواهد گرفت. اینکه علت این پدیده چیست و آیا به این خاطر ، آن طور که برخى از محققان معتقدند، آب و هواى کره زمین تغییر خواهد کرد یا اینکه اصولاً بقاى حیات بر روى کره خاکى ما با خطر مواجه مىشود، هنوز مشخص نیست.
کلمات کلیدی: مغناطیس، هواشناسی و اختر فیزیک
![]() |
![]() |
کلمات کلیدی: مغناطیس، هواشناسی و اختر فیزیک