امروزه اغلب مکالمات تلفنی، مخابره ی فکس ها و تقریباً تمام نقل و انتقالات اینترنتی و پست الکترونیکی (email) بین شهرها و قاره ها بوسیله ی فیبرهای نوری انجام می شود. هادی ( رسانا ) در فیبر نوری، نور است در صورتی که در سیم برق، جریان الکتریسیته کار هدایت را انجام می دهد. در یک سیم برق، الکترونها بوسیله ی اعمال میدان الکتریکی از یک انتهای سیم به طرف دیگر آن می روند. در فیبر نوری، این فوتونهای نور هستند که چون در کابل محبوس شده و راه گریزی ندارند به ناچار تنها انتخابی که پیش روی خود می بینند حرکت از یک طرف فیبر به سمت دیگر آن است! البته محبوس شدن سیگنالهای نوری در هسته ی کابل فیبر نوری به علت پدیده ای است که ما آنرا « بازتاب کلی » نامیده ایم.
اگر شما در استخر شنا به طور کامل تا سر زیر آب فرو رفته و از آنجا به سطح آب نگاه کرده باشید شاید متوجه این مساله شده باشید که سطح جدایی هوا - آب به یک آینه تبدیل شده و شما نمی توانید آن طرف را ببینید. این مثالی از « بازتاب کلی » است. به طور اساسی هر وقت یک سطح اشتراک از دو ماده با ضریب شکست یا چگالی متفاوت داشته باشید، پرتو نوری که بخواهد از ماده ی چگالتر تحت زاویه ای بزرگتر از زاویه ی حد وارد محیطِ ( ماده ی ) با غلظت کمتر شود به طور کامل از این سطح اشتراک بازتاب می کند.
اساس تمامی فیبرهای نوری را سیمهای استوانه ایی از جنس شیشه تشکیل می دهند. این فیبرها شامل هسته و روکش هستند؛ بطوریکه چگالی نوری هسته بیشتر از چگالی نوری روکش است. روکش، هسته را مانند ژاکتِ استوانه ای شکلی کاملاً احاطه می کند، سیگنال نوری به هسته وارد و طبق خاصیت « بازتاب کلی » از سطح جدایی هسته – روکش بازتابیده می شود. این تقریباً مثل این است که یک آینه ی استوانه ای باریکی داشته باشید که نور را بازتاب می کند. بازتابهای کلی تأثیر بسزایی در اینکه سیگنال نوری شدت اولیه اش را از دست ندهد دارند؛ در صورتیکه بازتاب از یک آینه ی نقره اندود معمولی اینگونه نیست. به مدد خاصیت « بازتاب کلی » سینگنالها می توانند فاصله ای بیشتر از ۲۵۰ مایل ( ۴۰۰ کیلومتر ) را بدون نیاز به تقویت طی کنند.
کلمات کلیدی: فیزیک نوین
یکی از حرکتهای مهم ، حرکت دورانی است. نمونههای بسیاری از این نوع حرکت را هر روز مشاهده میکنیم. چرخش زمین به دور محور خود نمونهای از حرکت دورانی است. باید توجه داشته باشیم که حرکت بر روی مسیر دایرهای ، با دوران یک جسم به دور یک محور تفاوت دارد. هر حرکت دورانی با محور دوران و زاویه دوران مشخص میشود. زاویه دوران در سرعت زاویهای جسم لحاظ میشود.
سینماتیک دوران
جسم صلبی را در نظر بگیرید که حول محوری که بر سطح این جسم عمود است، دوران میکند. برای سادگی فرض میکنیم که محور دوران ثابت میباشد. اگر محل ذرهای بر روی جسم در چارچوب مرجع ما معلوم باشد، میتوانیم وضعیت تمامی جسم در حال دوران را در این چارچوب مرجع مشخص کنیم. لذا برای سینماتیک این مسیله ، کافی است که فقط حرکت یک ذره بر روی یک دایره را در نظر بگیریم. اندازه دوران در هر لحظه به وسیله زاویه θ ، زاویهای که موضع زاویهای ذره نسبت به موضع اولیه میسازد، تعیین میشود. لذا اگر جهت دوران پاد ساعتگرد را مثبت اختیار کنیم، در نتیجه θ هنگام دوران پاد ساعتگرد افزایش و هنگام دوران ساعتگرد کاهش پیدا میکند.
سرعت زاویهای ω
آهنگ تغییرات جابهجایی زاویهای ذره (θ) نسبت به زمان به عنوان سرعت زاویهای متوسط تعریف میشود. در واقع اگر تغییرات زاویهای را با θ∆ و مدت زمان این تغییر را با t∆ نشان دهیم، در این صورت سرعت زاویهای با نسبت θ/∆t∆ برابر است. حال اگر چنانکه از این عبارت هنگامی که t∆ به سمت صفر میل میکند، حد بگیریم کمیت حاصل سرعت زاویهای لحظهای خواهد بود. با توجه به تعریف مشتق در واقع میتوان گفت که سرعت زاویهای با مشتق زمانی جابجایی زاویهای θ برابر است. یکای سرعت زاویهای عکس یکای زمان است و معمولا یکاهای آن را رادیان بر ثانیه یا دور بر ثانیه انتخاب میکنند.
شتاب زاویهای α
اگر سرعت زاویهای تغییر بکند، این تغییر سبب ایجاد شتاب میگردد. این شتاب ، شتاب زاویهای نام دارد. اگر و ω_۲ به ترتیب سرعتهای زاویهای لحظهای در زمانهای t_۱ و t_۲ باشند، در این صورت شتاب زاویهای متوسط که با \bar α نشان میدهیم، به صورت زیر خواهد بود:
حال اگر از این عبارت هنگامی که t∆ به سمت صفر میل میکند، حد بگیریم، در این صورت کمیت حاصل را شتاب زاویهای لحظهای میگویند. چون سرعت زاویهای (ω) برای تمام ذرات جسم صلب یکسان است، لذا شتاب زاویهای (α) نیز برای تمام ذرات یکسان خواهد بود. یکای شتاب زاویهای عکس مجذور زمان است و یکاهای آن را معمولا رادیان بر مجذور ثانیه یا دور بر مجذور ثانیه تعریف میکنند.
مقایسه حرکت دورانی حول محور ثابت و حرکت انتقالی
دوران ذره (یا جسم صلب) حول یک محور ثابت با حرکت انتقالی ذره (یا جسم صلب) در یک امتداد ثابت همخوانی صوری دارد. متغیرهای سینماتیک در حالت اول θ (جابجایی زاویهای) ، ω (سرعت زاویهای) و α (شتاب زاویهای) هستند، اما در حالت دوم x (جابهجایی خطی) ، v شتاب خطی) هستند. این کمیتها دو به دو متناظرند. البته اینها از لحاظ یکا با هم اختلاف دارند. هرگاه در حرکت انتقالی محدودیت مربوط به حرکت در امتداد خط راست را حذف کنیم و حالت کلی حرکت سه بعدی را بر روی مسیر منحنی در نظر بگیریم، متغیرهای خطی a ، v ، x به صورت مولفههای اسکالر بردارهای سینماتیکی ظاهر میشوند، اما در صورت حذف محدودیت دوران حول محور ثابت ، متغیرهای سینماتیک دوران به این سادگی به بردار تبدیل نمیشوند.
با استفاده از تناظری که اشاره شد، به راحتی میتوان معادلات حرکت را در حرکت دورانی حول یک محور ثابت بدست آورد. فقط کافی است متغیرهای سینماتیکی حرکت انتقالی در امتداد ثابت را با متغییرهای سینماتیکی حرکت دورانی جایگزین کنیم.
نمایش برداری کمیتهای دورانی
جابجایی ، سرعت و شتاب خطی کمیتهای برداری هستند. کمیتهای زاویهای متناظر آنها نیز میتوانند بردار باشند، چون علاوه بر بزرگی باید جهتی نیز برای آنها در نظر گرفت. به عنوان مثال ، اگر محور دوران ثابت نباشد، در این صورت نمیتوان گفت که کمیتهای α ، ω ، θ باز هم حالت اسکالر دارند، اما نمیتوانیم این کمیتها را بردار تصور کنیم. به عنوان مثال ، جابجایی زاویهای θ نمیتواند بردار باشد، چون به صورت برداری با هم جمع نمیشوند. از ریاضیات میدانیم که حاصل جمع دو بردار خاصیت جابجایی دارد، یعنی وقتی که دو بردار A و B را باهم جمع میکنیم، فرقی ندارد که A + B بنویسیم یا B + A. در صورتی که در مورد θ که زاویه دوران است، چنین نیست، اما اگر جابجایی زاویهای بینهایت کوچک باشد، میتوان آن را برداری در نظر گرفت.
رابطه سینماتیک خطی و زاویهای
هرگاه جسم صلبی حول یک محور ثابت بچرخد، هر ذره از آن بر روی یک مسیر دایرهای حرکت میکند. لذا میتوانیم حرکت این ذره را با متغیرهای خطی یا متغیرهای زاویهای توصیف کنیم. با استفاده از رابطه میان متغیرهای خطی و زاویهای میتوانیم از توصیف یکی توصیف دیگری را نتیجه بگیریم و اگر سرعت خطی را با v و سرعت زاویهای را با ω و فاصله نقطه مورد نظر از جسم صلب از محور دوران را با r نشان دهیم. در این صورت v = ω r خواهد بود. در حرکت دایرهای دو نوع شتاب میتواند وجود داشته باشد. یکی شتاب مماسی است که از تغییر سرعت خطی v حاصل میشود و دیگری شتاب زاویهای است که از تغییرات سرعت زاویهای ω بوجود میآید.
گشتاور نیرو
در حرکت انتقالی نیرو را به شتاب خطی جسم وابسته میکنیم. در حرکت دورانی کمیتی که به شتاب زاویهای جسم وابسته است، گشتاور نیرو میباشد. ابتدا گشتاور نیرو را برای حالت خاص یک ذره منفرد که از یک چارچوب مرجع لخت مشاهده میشود، تعریف میکنیم. سپس آن را به دستگاههای ذرات تعمیم میدهیم. در مورد یک ذره منفرد که به فاصله r از مبدا مختصات قرار دارد و تحت تاثیر نیروی F حول محوری که از مبدا مختصات گذشته و بر صفحه شامل ذره و نیرو عمود است، دوران میکند، گشتاور نیرو با حاصلضرب برداری r در F برابر است.
در حرکت دورانی گشتاور نیرو با شتاب زاویهای ارتباط نزدیکی دارد، یعنی همان گونه که در حرکت انتقالی نیرو با حاصلضرب جرم و شتاب خطی برابر است، گشتاور نیرو نیز با حاصلضرب شتاب زاویهای در ممان اینرسی (یعنی گشتاور لختی یا لختی دورانی) برابر است، یعنی اگر گشتاور نیرو را با T و ممان اینرسی را با I نشان دهیم، خواهیم داشت I = T .
حرکت دورانی حول محوری که حرکت انتقالی دارد
دوران حول یک محور ثابت حالت خاصی از حرکت دورانی است، اما اگر محور دوران ثابت نباشد، در این صورت شرایط فرق میکند. به عنوان مثال ، استوانهای که بر روی یک سطح افقی میغلتد، نمونهای از این نوع حرکت است. حرکت غلتان این جسم را میتوان ترکیبی از حرکتهای انتقالی و دورانی در نظر گرفت. در مورد استوانه در هر لحظه نقطه تماس استوانه و سطح در حال حرکت است، چون جسم نمیلغزد. بنابراین در این حالت میتوان حرکت را ترکیب حرکت انتقالی مرکز جرم و حرکت دورانی حول محوری که از مرکز جرم میگذرد، دانست که هم ارز است با یک حرکت دورانی محض با همان سرعت زاویهای حول محوری که از نقطه تماس جسم غلتان میگذرد.
دوران جسم صلب حول محور دلخواه
در کلیترین حالت دوران جسم صلب حول محوری که ثابت نبوده و حرکت دورانی دارد، مورد بحث قرار میگیرد. در این حالت برای بررسی حرکت جسم صلب به صورت زیر عمل میکنیم:
دو سیستم مختصات که یکی در خارج از جسم ثابت بوده و دیگری در روی جسم صلب قرار داشته و به همراه آن میچرخد، در نظر میگیریم. سیستم مختصات متصل به جسم را با پریم مشخص میکنیم. در این صورت سه محور چارچوب ثابت و چارچوب متصل به جسم با هم زاویه میسازد که این زوایا را زوایای اویلر میگویند. به بیان دیگر ، میتوان گفت که با سه دوران پیدرپی به اندازه این زاویهها دو چارچوب پریمدار و بدون پریم بر هم منطبق میشوند.
بنابراین چارچوب برای نشان دادن جهت گیری جسم صلب در فضا نسبت به چارچوب ساکن در نظر گرفته میشود، اما در مورد جسم صلب میتوان سه محور عمود بر هم چنان انتخاب کرد که حاصلضرب ممانهای اینرسی صفر شوند. لازم به توضیح است ممان اینرسی جسم صلب ، در حالت کلی ، به صورت یک ماتریس خواهد بود که اعضای قطر اصلی ، ممان اینرسی اصلی و سایر عناصر را حاصلضرب ممانهای اینرسی میگویند. بنابراین چارچوب سومی در نظر گرفته میشود که سه محور آن محورهای اصلی جسم صلب هستند.
به این ترتیب معادلات حرکت جسم صلب تنظیم میگردد و در مورد نحوه حرکت و تعادل جسم صلب بحث میشود. بدیهی است که در این حالت کمیتها به صورت تانسوری در نظر گرفته میشوند. به عنوان مثال ، اندازه حرکت خطی به صورت L = Iω بیان میشود که دراین جا I تانسور اینرسی است که نمایش آن به صورت یک ماتریس مربعی است و ω به صورت یک ماتریس ستونی میباشد. به خاطر پیچیدگیهای ریاضی از ارایه معادلات حرکت خودداری میشود.
کلمات کلیدی: فیزیک حالت جامد
برای توضیح درباره آنچه هنگام شکستن دیوار صوتی روی می دهد ، ابتدا باید به صوت به چشم موجی با سرعت انتشار محدود نگاه کرد.همه شما با اثرات ناشی از محدود و نسبتا کم بودن سرعت صوت آشنایی دارید؛ بازتاب صدا در کوه ، تاخیر زمانی در شنیدن صدای بلندگوهایی که یک چیز را پخش می کنند و شنیدن صدای رعد پس از دیدن برق . در سطح دریا و دمای ۲۲درجه ، امواج صوتی با سرعت ۳۴۵متر بر ثانیه یا ۱۲۴۰کیلومتر در ساعت منتشر می شوند. هر چه دما و فشار کاهش یابد، سرعت صوت کم می شود، به طوری که برای هواپیمایی در ارتفاع ۳۵هزار پایی - جایی که دما ۵۴- درجه است سرعت صوت به ۲۹۵متر در ثانیه یا ۱۰۶۰کیلومتر در ساعت می رسد. حالا یک منبع صوتی را تصور کنید که یک پالس در ثانیه در فضا پخش می کند. این پالسها را می توان به صورت پوسته های کروی از هوای پرفشار که با سرعت صوت بزرگ می شوند و صوت را منتشر می کنند تصور کرد (درست مانند دایره های ایجاد شده در سطح آب پس از پرتاب یک سنگ) به این کره ها جبهه های موج می گوییم . اگر چشمه ساکن باشد ، این کره ها، مانند دایره های آب هم مرکز خواهند بود ؛ اما اگر منبع شروع به حرکت کند، این کره ها را در جهت حرکتش جابه جا خواهد کرد. به طوری که فاصله کره ها از هم در یک طرف (در جهت حرکت) کمتر و در طرف مقابل بیشتر خواهد شد. (با رسم شکل این مطلب را خواهید دید). مقدار این جابه جایی بستگی به سرعت منبع نسبت به سرعت انتشار صوت دارد. هر چه سرعت منبع بیشتر باشد، به جبهه های موجی که در هر لحظه تولید می کند، نزدیکتر شده و بنابراین فاصله جبهه ها در مقابل منبع کمتر و کمتر می شود، تا این که در سرعت صوت ، منبع به موج صوتی خود می رسد و با آن حرکت می کند. به طوری که جبهه های کروی امواج تولید شده همگی مقابل منبع انباشته می شوند. (مثل حلقه های تودرتو با شعاعهای مختلف که در یک نقطه بر هم مماسند). از نظر فیزیکی جبهه های موج نشاندهنده تغییرات فشار هوا هستند و همین تغییرات فشار است که گوش ما آن را به صورت صدا می شنود.
حالا تصور کنید همه این جبهه های موج پرفشار جلوی یک هواپیما که با سرعتی در آستانه سرعت صوت حرکت می کند جمع شود. در این صورت جبهه ها همدیگر را تقویت می کنند و یک موج فشار با دامنه بسیار زیاد تشکیل می دهند. این موج ، نیروی مقاومت هوا را زیاد می کند و باعث کاهش نیروی بالابر و دشواری کنترل هواپیما می شود. وقتی سرعت هواپیما با افزایش توان از سرعت صوت پیشی می گیرد، از این سد و دیوار صوتی عبور می کند و به اصطلاح دیوار صوتی را می شکند. در این حالت موج ، دامنه تشکیل شده که به آن shock wave گفته می شود در هوا منتشر می شود و به زمین می رسد. شدت موج رسیده به زمین به ارتفاع هواپیما و اندازه آن بستگی دارد. اگر هواپیما به قدر کافی به زمین نزدیک باشد موج فشار می تواند آنقدر قوی باشد که باعث شکستن شیشه ها، تخریب ساختمان های سست و یا کاهش شنوایی افراد شود. شکستن دیوار صوتی یا گذشتن از سرعت صوت ، اولین بار در ۱۴اکتبر ۱۹۴۷ و به وسیله چاک بیگر، خلبان نیروی هوایی امریکا با هواپیمای -X۱ که به همین منظور ساخته شده بود اتفاق افتاد. امروزه بیشتر هواپیماهای جنگنده براحتی از سرعت صوت می گذرند، به طوری که سرعت بعضی مانند SR۷۱ به ۳۶۰۰کیلومتر در ساعت ۳برابر سرعت صوت می رسد. اما تصویر بالا به شما امکان می دهد که این پدیده صوتی را ببینید! این تصویر که به وسیله جان گی در جولای ۱۹۹۹ گرفته شده است ، یک فروند هواپیمای F۱۸ هورنت را در حال عبور از دیوار صوتی بر فراز اقیانوس آرام نشان می دهد. اشتباه نکنید. ابرسفید رنگ صدا نیست . در اطراف بالهای هواپیما بخصوص در شرایط پرواز صوتی ، مناطق کم فشار فراوانی ایجاد می شود. اگر هوا بخار آب زیاد داشته باشد، فشار هوای پایین ، آب موجود در هوا را متراکم می کند و باعث ایجاد ابری از بخار در اطراف آن می شود. وقتی هواپیما از دیوار صوتی عبور می کند، هوا به طور موضعی با shock wave آشفته و بخار ناپدید می شود. جان گی عکس را در لحظه ای که صدای غرش را شنید ، درست پیش از ناپدیدشدن ابر ، گرفته است.
کلمات کلیدی: مغناطیس
"بسم الله الرحمن الرحیم"
“اتساع زمانی: معجزه ی قرآن”
بسیار عجیب است که مسلمانان از معادله ی دیگری استفاده می کنند تا این مطلب را آشکار نمایند که فرشتگان به سرعت نور شتاب می گیرند.
قرآن آنها در یک آیه بیان می کند که ظاهرا زمان برای فرشتگان با سرعت ثابت از برای انسانها کمتر می گذرد.
که این مطلب با نسبیت خاص اینشتین صدق می کند که در آن نیز در سرعتهای بالا زمان برای اشیایی با آن سرعت آرام تر می گذرد.
مسلمانان از نسبیت خاص اینشتین و این آیه استفاده کرده اند تا از این مطلب که فرشتگان در حقیقت به سرعت نور شتاب می گیرند حمایت کنند.
آیه: "فرشتگان و ارواح در یک روز به او (مذکر) صعود کردند که این معادل پنجاه هزار سال برای انسان است"!
در اینجا فرشتگان یک روز را معادل پنجاه هزار سال برای انسان گذر می کنند. (زمان در مقابل زمان و نه زمان در مقابل فاصله مانند آیه ی قمری قبل).
اگرچه طبق نظریه ی نسبیت خاص اینشتین و بوسیله ی این تغییرات زمان (تاخیرات زمانی) بدست آمده به عنوان یک ادعا از مسلمین (که واقعا آن فرشتگان به سرعت نور شتاب می گیرند) را می توانیم تصدیق یا انکار کنیم.
این ادعا می تواند در دو دقیقه تصدیق شود که آنگاه هیچ نیازی به عقاید کورکورانه نخواهد بود.
آلبرت اینشتین یک مسلمان نبود اما یهودی ای بود که نظریه ی معروف نسبیت خاص را ارائه داد.
هرچه سرعت بیشتر بشود زمان آرام تر می گذرد.
در بیرون یک میدان گرانشی زمان اینگونه است:
∆t= ∆t0/ (1-v^2/c^2) ^0.5
جاییکه ∆t0 زمانی می باشد که برای متحرک بوسیله ی متحرک معادل است.
∆t زمانی است که برای متحرک معادل گذر ایستگاهی است.
V سرعتی است که به شاهد ایستگاهی نسبت داده می شود.
∆t0 زمانی است که برای فرشتگان می گذرد. (یک روز).
∆t زمانی است که معادل زمان برای انسانها است. (پنجاه هزار سال قمری در دوازده ماه قمری بر سال قمری در 27.321661 روز بر ماه قمری).
و V سرعت فرشتگان در این مورد است. (که ما قصد داریم آنرا حساب و با سرعت شناخته شده ی نور مقایسه کنیم). سرعت نور در خلا 299792.458 کیلومتر بر ثانیه است.
از معادله ی بالا می توانیم آن سرعت ناشناخته را حساب کنیم:
v=c (1-∆t0 ^2/∆t^2) ^0.5
حال بهتر است اظهارات مسلمین را در معادله جایگزین کنیم و ببینیم که فرشتگان مسلمین واقعا به سرعت نور شتاب می گیرند یا نه؟
ارقام را از آیه در این معادله جایگزین می کنیم:
v =c (1-(1^2/(50000*12*27.321661)^2))^0.5
v = c * 0.99999999999999981
v = 299792.4579999994 km / s
این اتساع زمانی (تغییرات زمانی) نشان می دهد که فرشتگان در بیرون از میادین گرانشی به سرعت نور شتاب می گیرند. (کمی کمتر از سرعت نور زیرا جرم دارند).
این نمی تواند یک تصادف باشد زیرا سرعت حساب شده دقیقا یکسان با آیه ی قمری قبلی همچنین در بیرون از یک میدان گرانشی است.
مسلمانان همواره می پرسند که چگونه یک مرد بی سواد 1400 سال پیش توانسته اتساع زمانی و هسته نسبیت را بدست آورد!
پس قرآن کلام خداست.
کلمات کلیدی: فیزیک نوین
فاصله بین دو قله متوالی(یا بین هر دو نقطه تکراری موجی،شکل یکسان دارند )را “طول موج “می نامند و آن را با لاندا نشان میدهند.چون شکل موج با سرعت ثابت c پیش میرود،فاصله یک طول موج را در یک دوره تناوب طی میکند.
فاصله بین دو نقطه یکسان موج میباشد که مشخص کننده رنگ موج است. با تعیین رنگ، انرژی و طول موج میتوان یک موج را نسبت به دیگر موج ها سنجید. به عنوان مثال طول موج های کوتاه در طیف مریی در ناحیه بین آبی و فوق بنفش قرار میگیرد در حالیکه رنگ قرمز دارای طول موج های بلندتری میباشد. فاصله بین این قله های موج آن چنان کوچک است که واحد آن را نانومتر (ده به توان منفی نه) یا میکرون (ده به توان منفی شش) قرار داده اند. تشعشع الکترومغناطیسی طیف طولانی از طول موج های بلند رادیویی تا طول موج های کوتاه اشعه ایکس را شامل میشود.
کلمات کلیدی: فیزیک نوین