اندازه ابر ماژلانی بزرگ ، تقریبا یک چهارم اندازه کهکشان راه شیری است و حتی میتوان آنرا قمر کهکشان راه شیری است و حتی میتوان آنرا قمر کهکشان راه شیری به حساب آورد. |
چنانچه در کهکشان ام100 مشاهده میشود، ستارهها و ابرهای گازی بطور مارپیچ از بازویی به بازوی دیگر در حرکت هستند. این عامل سبب تشکیل ستارههای جدید در ابرهای گازی آبی رنگ میشود. |
برخی کهکشانهای مارپیچی دارای چندین بازو هستند، ولی یک کهکشان مارپیچی میلهای مانند این که در تصویر میبینید (ان.جی.سی 1313) ، فقط دو بازو دارد. |
تقریبآ تمام ستارههای کهکشانهای بیضوی مانند ان.جی.سی 1399 که در تصویر می بینید دارای طول عمری بیش از 10 میلیارد سال هستند. |
این تصویر که توسط تلسکوپ فضایی هابل تهیه شده نمایانگر ناحیه مرکزی کهکشان فعال ان.جی.سی 1069 میباشد. |
در این تصویر که رنگهایش ساختگی هستند، یک دنباله کشندی دو کهکشان را به هم وصل کرده شکل یک قارچ چتری را بوجود میآورد. |
مقدمه
کهکشان به مجموعه ستارگان ، گاز و غبار گفته می شود که با نیروی جاذبه کنار هم نگاه داشته شدهاند. کوچکترین کهکشانها دارای عرضی برابر با چند صد سال نوری ، شامل حدود 100000 میلیارد سال ستاره هستند. بزرگترین کهکشانها تا 3 میلیون سال نوری عرض دارند و شامل بیش از 1000 میلیارد ستاره هستند.
اشکال کهکشانها بر اساس شیوهای طبقه بندی میشود که طبق شیوه طبقه بندی ستاره شناس آمریکایی ، ادوین هابل (1953- 1986) ، شکل یافته است. در مورد تکامل کهکشانها اطلاعات قطعی کمی در دست است. تنها مطلب مورد اطمینان این است که کهکشانها میلیاردها سال پیش به شکل تودهای از ابرهای گازی و غباری بوجود آمدند.
کهکشانهای نامنظم هیچ شکل یا ساختار منظمی ندارند، آنها دارای جرم بیشتری از کهکشانهای دیگر هستند و بیشتر ستارههای موجود در آنها دارای طول عمر کم و درخشان میباشند. با وجود اینکه بسیاری از کهکشانهای نا منظم در بر گیرنده نواحی تابان گازی هستند که ستارهها در آنها شکل میگیرند، بیشتر گاز میان ستاره ای کهکشانها بایستی متراکم شوند تا ستارههای جدیدی بوجود آورند. حدود 5% از هزار کهکشان درخشان را کهکشانهای نا منظم تشکیل میدهند. این در حالی است که یک چهارم کهکشانهای شناخته شده نیز کهکشانهای نامنظم هستند.
کهکشانهای مارپیچی دارای بازوهایی هستند که شکلی مارپیچی در اطراف بر آمدگی مرکزی یا هسته ، قرصی ایجاد میکنند که چرخش هسته با چرخش بازوهای آن همراه میشود. جوانترین ستارههای کهکشانهای مارپیچی در بازوهای کم توده یافت میشوند و ستارههای کهن اکثرا در هسته متراکم قرار دارند. کهنترین ستارهها در هالههای کروی پراکنده قرار دارند و اطراف قرص کهکشانی را فرا گرفتهاند. بازوهای مذکور همچنین دارای غبار و گاز فراوانی هستند که منجر به تشکیل ستارههای جدید میشود.
یک کهکشان مارپیچی میلهای دارای یک هسته برآمدگی مرکزی کشیده شده و میلهای شکل است. همزمان با چرخش هسته اینطور به نظر میرسد که در هر سوی هسته یک بازو نیز میچرخد. برخی ستاره شناسان عقیده دارند کهکشان راه شیری نیز یک کهکشان مارپیچی میلهای است. شکل کهکشانهای مارپیچی و کهکشانهای مارپیچی میلهای متغیر است.
از کهکشانهای با برآمدگیهای مرکزی بزرگ با بازوهای نه چندان بهم پیوسته تا کهکشانهای با برآمدگیهای مرکزی کوچک و بازوهای آزاد. گر چه کهکشانهای مارپیچی و مارپیچی میلهای پیش از این به عنوان دو نوع کهکشان متفاوت طبقه بندی میشدند، ولی امروزه ستاره شناسان آنها را مشابه میدانند.
کهکشانهای بیضوی از نظر شکل ، از شکل بیضیگون (شبیه توپ فوتبال امریکایی) تا شکل کروی متغیر هستند و اشکالی ما بین این دو نیز یافت میشوند. بر خلاف کهکشانهای دیگر که نوری آبی از ستارههای فروزان و کم عمر منعکس میکنند، کهکشانهای بیضوی زرد رنگ بنظر میرسند. علت این امر توقف شکل گیری ستارگان در این کهکشانها میباشد که در نتیجه تقریبا تمام نور آنها از ستارههای غول سرخ که دارای طول عمر زیادی هستند تأمین میشود.
از تمام کهکشانها میزان معینی تشعشع الکترومغناطیسی ساطع میشود. برخی کهکشانها ، به طرز غیر عادی ، مقادیر زیادی تشعشع تابش میکنند. این کهکشانها ، کهکشانهای فعال نامیده میشوند. انرزی آنها از منبعی با جرم بسیار زیاد اما به هم فشرده که در مرکز کهکشان فعال قرار دارد تأمین میشود.
انرژی اغلب بصورت اشعه ایکس ، موج رادیویی و همچنین نور است و میزان انرژی آزاد شده به قدری زیاد است که نمیتوان تصور کرد ستارهها آنرا بوجود آورده باشند. ستاره شناسان بر این عقیده اند که تنها جسمی که قادر است این مقدار انرژی را ازاد کند یک حفره سیاه فوق العاده پر جرم است. بنابر این، علت اینکه برخی کهکشانها از جمله کهکشان خودمان انرژی نسبتا کمی آزاد میکنند این است که حفره سیاه مرکزی کوچکی را در میان گرفتهاند.
بنظر میرسد که کوازارها (شبه ستارهها) هسته فعال کهکشانهای دور دست باشند. آنها درخشانترین ، سریعترین و دورترین اجرام شناخته شده در جهان هستند. کوازارها همانند ستارگان از سطح زمین به مثابه یک نقطه نورانی خیلی ریز دیده میشوند. اگر چه کوازارها فقط به اندازه منظومه شمسی هستند، نور برخی از آنها مسافتی در حدود 10 میلیارد سال نوری را طی می کند تا به ما برسد. ما برای اینکه بتوانیم چنین اجرام دوری را شناسایی کنیم نیاز به تابش زیاد نور آنها داریم. تشعشع انرژی بعضی از کوازارها حدود 100 برابر تشعشع کهکشانهای عظیم است.
با گسترش جهان کوازارها که در لبه خارجی آن قرار دارند بسرعت از زمین فاصله میگیرند. دورترین کوازارهایی که قابل رویت حدود 12 میلیارد سال نوری در جهت انتهای قابل مشاهده جهان قرار دارند. بخاطر زمان زیادی که طول میکشد تا نور کوازارها به زمین برسد، این کهکشانها ستاره شناسان را قادر میسازند تا جهان را در اولین مراحل شکل گیری ، مورد مطالعه قرار دهند. کوازارها فوق العاده درخشان و در عین حال بسیار مهم فشرده میباشند. در مقایسه با گستره کهکشان راه شیری که 100000 سال نوری میباشد، کوازارها قطری معادل چند روز یا هفته نوری را تشکیل میدهند.
تمامی کهکشانها ، موج رادیویی ، نور قابل رویت و انواع تشعشع از خودشان تولید مینمایند. انرژی رادیویی یک کهکشان رادیویی خیلی متراکمتر از انرژی کهکشانهای معمولی است. این انرژی از دو قطعه خیلی بزرگ ، یا ابرهای عظیم الجثه متشکل از ذرات در حال دور روشن از کهکشانها تشتشع مییابند.
این ابرهای عظیم از فورانهای گازی که از مرکز کهکشان با سرعتی معادل یک پنجم سرعت نور خارج میشوند، در آسمان شکل میگیرند. به نظر میرسد که فوران این انرژی عظیم توسط یک حلقه پیوستگی صورت میگیرد که یک حفره سیاه خیلی متراکم را در بر میگیرد و در مرکز کهکشان واقع است. از هر یک میلیون کهکشان فقط یکی از آنها یک کهکشان رادیویی است.
بیشتر کهکشانها از کهکشانهای همسایه خود صد هزار سال نوری فاصله دارند. به هر حال، بعضی از کهکشانها تا اندازهای به یکدیگر نزدیک میشوند که نیروی جاذبه دو طرفه آنها اشیاء موجود در کهکشانها دیگر را به اطراف خود میکشد و این امر باعث بوجود آمدن تودههایی به نام دنبالههای کشندی میگردد، که این دنبالهها مانند پلی کهکشانها را به یکدیگر وصل مینمایند. نزدیکی بیش از حد کهکشانها ممکن است، توأم با تصادم آنها گردیده و به دنبال این عمل یک تغییر شکل بنیادی در شکل ظاهری آنها صورت پذیرد.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
حفرههای سیاه جذابترین و اسرار آمیزترین اشیاء آسمانی هستند. مهمترین یافتههای اختر شناسی سالهای 1960 تپ اخترها و اختر نماها هستند. تپ اخترها منابع رادیویی و (حداقل در یک مورد) منبع نوری تپنده منظم هستند. اختر نماها منابع نوری و رادیویی بسیار شدیدی هستند که ظاهراً از زمین فاصله زیادی دارند. کشف تپ اخترها و اخترنماها بیشتر در نتیجه پیشرفتهای اختر شناسی رادیویی تحقق یافت که در سالهای 1970منجر به جستجوی طبقه تازهای از اشیاء آسمانی شد که عجیبترین پدیدههای فیزیکی در جهانند.
سرعت گازهایی که بسوی حفره سیاه سرازیرند به سرعت نور میرسد، آنها بر اثر اصطکاک گرم میشوند، اشعههای ایکس قابل مشاهده ساطع کنند. |
این پدیدهها ، حفرههای سیاه نامیده میشوند. آنها را از اینرو به این نام خواندهاند که بینورند و چون یک جارو برقی اختری ، ماده و انرژی را از فضا میمکند. اختر فیزیکدانان ، حفرههای سیاه را که بسیار کوچکند، آخرین مرحله تاریخ زندگی ستارگان بسیار بزرگ میدانند. دانشمندان ، حفرههای سیاه را که بر اثر نیروی گرانش خودشان فرو میپاشند، از تئوری نسبیت عمومی آلبرت انیشتین استنتاج کردهاند. تئوری انیشتین در نظریه جاذبه (گرانش) نیوتون کاملاً تجدید نظر کرده است.
اگر یک حفره سیاه در فضای خارجی کشف شود. این رویدادها برای فیزیک و اختر شناسی با اهمیت خواهد بود. فیزیک کلاسیک نمیتواند حفره سیاه را تبیین کند. اگر یک حفره سیاه وجود داشته باشد، نسبیت عمومی بطور واقعی مورد تأیید قرار خواهند گرفت.
بر سر ستاره در حال احتضاری که بیش از دو برابر خورشید است چه میآید؟ حتی نیروی قوی نیز نمیتواند سرعت فرو پاشی درونی آن را متوقف سازد. و این ستاره کاملاً فرو میپاشد و از مرحله ستاره نوترونی فراتر رفته و حتی به یک شی کوچکتر و چگالتر یعنی حفره سیاه تبدیل میشود.
فرو پاشی کامل یه معنای آن نیست که حفره سیاه از روی صفحه جهان محو میشود. همانطور که بوسیله انیشتین توصیف شده است ساختار فضا - زمان فرو پاشی بی پایان را منتفی میکند و بجای آن یک انحنای غیر مادی ، نامرئی و واقعی فضا را بوجود میآورد. یک حفره سیاه را میتوان به مرد نامرئی سنگین وزنی تشبیه کرد که روی یک نیمکت نشسته است. او دیده نمیشود ولی وزن او در نیمکت فرو رفتگی ایجاد میکند.
حفره سیاه برای فیزیکدانان نظری چیز تازهای نیست. در سال 1939 ج. اوپنهایمر و هارتلند و اس. اشنایدر برای نخستین بار حفرههای سیاه را به عنوان نتیجهای از نسبیت عمومی پیشنهاد کردند، ولی در آن زمان برای تشخیص آنها هیچ راه معلومی وجود ندارد.
اما با پیشرفت اخیر اختر شناسی رادیویی و کشف علائم رادیویی توضیح ناپذیر از اعماق فضا ، حفرههای سیاه به صورت موضوع بسیار مهم اختر شناسی درآمدهاند. دانشمندان معتقدند که این اشیاء نظری پدیدههای با انرژی فوق العاده چون اختر نماها و تپ اخترها میتوانند نقشی داشته باشند. حفرههای سیاه و ستارگان نوترونی تنها اشیاء شناخته شده در فیزیک هستند که برای انجام مشاهدههای اختر شناختی روی چنان فرستندههای بسیار نیرومند تشعشع ، به اندازه کافی فشرده و پر جرمند.
خواص حفرههای سیاه
فیزیکدانان به مدد تجهیزات کوچک ، توصیف نسبتاً جامعی از حفرههای سیاه بدست دادهاند. به عقیده دکتر جان ویلر و دکتر رئو روفینی از دانشگاه پرینستون حفرههای سیاه اندازه و شکلی به مفهوم قراردادی آن ندارند اما آنها در محدوده یک قطر 15 کیلومتری عمل میکنند. حفرههای سیاه جرمهای متفاوتی بین جرم خورشید و صد میلیون برابر جرم خورشید دارند. حفرههای سیاه مثل گرداب عمل میکنند.
هر جرم با انرژی سرگردانی که به یک حفره سیاه نزدیک شود (در داخل فاصله معینی که افق آن خوانده میشود) بطور مقاومت ناپدیری به درون گرداب ، که همان حفره سیاه است کشیده میشود. نیروهای کشندی شدید درون حفرههای سیاه ماده را در یک سمت میکشد و منبسط میکند و در سمت دیگر میفشرد و خرد میکند و خرد میکند تا آنکه آن ماده به کلی تجزیه و جزء فضای خمیده و حفره سیاه شود.
خواص دیگر حفرههای سیاه از این هم عجیبتر است. زمان و مکان خصوصیات خود را در درون ستاره کاملاً فرو پاشیده رد و بدل میکنند. هر شیء در شرایط عادی اندازه خود را نگه میدارد ولی نمیتواند از عمر فیزیکی بگریزد. در درون حفره سیاه بر اشیاء عمری نمیگذرد، ولی مداوماً کوچکتر میشوند. مشاهدهگران حفره سیاه از فاصله مطمئن و ایمنی نمیتوانند واقعاً آن را ببیند، زیرا نور مانند شکلهای دیگر انرژی ، تحت تأثیر مکش حفره سیاه است.
همچنانکه نور به درون آن کشیده میشود، بطور بیپایانی به انتهای قرمز طیف رنگها تغییر مکان میدهد و حفره سیاه را سیاه و بنابراین نامرئی میکند. اگر حفرههای سیاه اندکی مرئی بودند، مشاهده گران ، این ستارگان را درست آنگونه که پیش از فرو پاشی هزاران میلیون سال پیش رخ داده بود. علت آن است که وقتی ستاره به حفره سیاه تبدیل میشود، نسبت به ناظران خارج بیدرنگ گذشت زمان در آن متوقف میشود. به عقیده دکتر ویلر و دکتر روفینی (علائم و اطلاعات مربوط به مرحلههای بعدی فرو پاشی هرگز نمیگریزند، بلکه در فروپاشی خود هندسه (زمانی و مکانی) درگیر میشوند
چند حفره سیاه در جهان وجود دارد؟
به عقیده ای.جی.دابلیو. کامرون از دانشگاه یشیوا ممکن است جهان پر از حفره سیاه باشد. نظریه کیهان شناسی پیش بینی میکند که جهان شامل مقدار مشخصی ماده است. اما اخترشناسان از مشاهدههایشان استنباط کردهاند که تقریباً ماده به اندازه کافی وجود ندارد تا این پیش بینیها را عملی سازد. ماده مشاهده شده به اندازه قابل ملاحظهای کمتر از ماده پیش بینی شده است. دکتر کامرون بر آن است که ماده گمشده ممکن است بوسیله شمار زیادی حفره سیاه بلعیده شده باشد.
تاریخ شیمیایی جهان نشان میدهد که نخستین ستارگانی که تشکیل شدهاند بسیار بزرگ بودهاند و انتظار میرود به حفرههای سیاه تبدیل شوند. با قطعیت نمیتوان گفت که همه ستارگان ناگزیر به حفرههای سیاه مبدل میشوند. دانشمندان نشان دادهاند که ستارگان نامتقارن ستارگانی که تقارن کروی تقریباً کامل ندارند به این سرنوشت دچار میشوند. اما به عقیده وای. ب. زلدوویچ فیزیکدانان شوروی و گروه انگلیسی استون هاوکینگ ، راجر بن روز و روبرت چراک ، عدم تقارن شکلی کوچک ، یک ستاره بزرگ را نجات نخواهند داد.
یک از راههای کشف حفرههای سیاه استفاده از امواج گرانشی است که هنگام فروپاشی گسیل میدارند. هر جرم اختری از حیث شکل نامتقارن تششع ممکن است یک منبع قابل اکتشاف مشخص بوجود آورد. جوزف وبر از دانشگاه مریلند ، پیش کسوت رشته تشعشع گرانشی ، رویدادهای زیادی را کشف کرده است که حاکی از ویرانی وسیع ماده در جهان ، از راه فرو پاشی گرانشی است. کار افزار و عبارت است از آنتنهای آلومینیومی ، ابزاری که بوسیله سیمهایی در داخل اتاقهای حفاظ داری آویزانند. این کار افزار و قادر به کشف حفره سیاه است، اما متأسفانه این کار را نمیتواند به دقت انجام دهد.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
مقدمه
در سال 1971 یک دانشمند انگلیسی به نام استفن هاوکینگ عنوان کرد که این واقعه بوجود آمدن سیاهچالهها هنگامی که جهان نخستین انفجار بزرگ خود را آغاز کرد اتفاق افتاده است. هنگامی که تمامی مواد تشکیل دهنده جهان منفجر شد، مقداری از این مواد آن چنان به هم فشرده شدند که تبدیل به سیاهچاله گشتند. وزن برخی از این سیاهچالهها ممکن است به اندازه وزن یک سیاره کوچک و یا از آن کمتر باشد و وی آنها را سیاهچاله کوچک نامید.
انواع سیاهچاله
اگر ستاره شناسان بتوانند نوع پرتوهایی که هاوکینگ پیش بینی کرده است، شناسایی کنند، مدرک خوبی برای تأیید تشکیل و وجود سیاهچاله بدست خواهد آمد. اما تاکنون پرتوهای پیش بینی شده کشف نشدهاند. با اینحال هر لحظه ممکن است این پرتوها شناسایی شوند. دلیل تابش اشعه ایکس از حفره سیاه این است که جرمی که توسط طوفانهای ستارهای خود ستاره ، از سطح آن میگریزند، در فاصله مناسبی که به حفره سیاه رسیدند، توسط حفره شکار میشوند و در مداری به دور حفره شروع به چرخش کرده و به این ترتیب شکل یک دیسک عظیم را تشکیل میدهند.
با توجه به این نکته که لایههای داخلیتر دیسک سریعتر از لایههای خارجی میچرخند، در اثر اصطکاک لایههای مختلف دیسک گرم شده و شروع به تابش اشعه ایکس میکنند. به این دیسک ، دیسک تجمعی گفته میشود. این حالت برای اولین بار در ستاره دوتایی (دجاجه1-X) مشاهده شده است. احتمالا قطر خود حفره سیاه (قطر افق حادثه) 30 کیلومتر است و برای تمامی ستاره دوتایی سیاهچاله ساختمان به همین شکل است.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
ستاره شناسان اکثر مطالعات مفصل فضایی خود را از طریق رصدخانهها انجام میدهند. محل رصدخانه یکی از مهمترین خصوصیات آن است زیرا تلسکوپها باید دور از نور شهرها مستقر شوند تا نور ضعیف ستارگان تحت شعاع قرار نگیرد. رصدخانهها اغلب در کنار اقیانوس ساخته میشوند، زیرا هوای آنجا ثابتتر است و ستارگان کمتر سوسو میزنند، در نتیجه تصاویر شفافتری بدست میآیند.
در آنجا تلسکوپها ، نوری را که از سیارهها ، ستارگان و کهکشانهای دور دست میرسد، جمع میکنند. رصدخانه ، ساختمان ویژهای به شکل گنبد دارد تا تلسکوپها را از باد ، باران و برف حفظ کند. در گنبد رصدخانه دریچهای هست که از راه آن ، تلسکوپ را متوجه آسمان میکنند. در یک رصدخانه بزرگ ، چندین تلسکوپ بکار گرفته میشود، تا هر کدام به شیوهای مخصوص مورد استفاده اخترشناسان قرار گیرند.
شرایط یک رصدخانه
رصدخانههای مهم بر فراز کوهها بنا میشوند تا از مزاحمت ابرها به دور باشند. در کوهستان ، روشنایی شهر و خیابانهای آن نیز به حداقل میرسد. گاهی اختر شناسان برای رسیدن به تلسکوپهای خود ، هزاران کیلومتر راه طی میکنند. یک رصدخانه جدید علاوه بر اخترشناس ، به اشخاص دیگری برای کار با کامپیوترها ، ساختن تجهیزات و راه اندازی تلسکوپها نیاز دارد. کار با کامپیوترها نه تنها در نشانه روی خودکار تلسکوپ به طرف اجرام آسمانی بلکه در محاسبات بسیار مشکل به اخترشناس کمک میکنند.
گنبد گران رصدخانه از تجهیزات در برابر عناصر طبیعی محافظت میکند. باز شدن شکاف سقف آن تلسکوب را آشکار میکند. |
رصدخانههای معروف
رصدخانه مشهور «ماونت پالومار» ، در کالیفرنیای جنوبی و در 160 کیلومتری لسآنجلس واقع است. اختر شناسان آمریکا ، رصدخانه جدیدی در آریزونا و بر فراز کوهستان «کیت پیک» تأسیس کردهاند. در حومه شهر توسکان ، چراغهای خیابانها را بخاطر این تلسکوپ به حداقل میرسانند. تلسکوپهای مهم بریتانیا ، در رصدخانه سلطنتی گرینویچ قرار دارد.
با همکاری مشترک اخترشناسان بریتانیا ، رصدخانهای در «سارس ویلز جدید» بر پا شده است. چهارمین تلسکوپ بزرگ جهان با آینهای به قطر 3.9 متر در این رصدخانه است. در زیر گنبد آن تأسیسات دیگری مانند کتابخانه ، آشپزخانه و تاریکخانه برای ظهور عکسهای تهیه شده وجود دارد. اخترشناسان با فرا رسیدن روز ، در ساختمان مجاور این گنبد عظیم به استراحت میپردازند.
برای آنکه اطلاعات بیشتری از ستارگان و کهکشانهای آسمانی نیمکره جنوبی بدست آید. در آمریکای جنوبی ، استرالیا و جزایر قناری نیز رصدخانههای جدیدی ساختهاند. رصدخانههای جدیدی که در هوای صاف کوهستان «آند» در شیلی واقعند، به کاوش آسمان نیمکره جنوبی میپردازند. هر کدام از آنها به تلسکوپهای بسیار مدرن ، مجهز هستند. به این ترتیب از آسمان نیمکره جنوبی ، میتوان عکسهایی با کیفیت خوب تهیه کرد.
رصدخانههای رادیویی
بسیاری از کهکشانها ، موج رادیویی گسیل می کنند. این امواج با تلسکوپهای رادیویی بزرگ ، آشکار می شوند. خوشبختانه ، ابرها جلوی موج رادیویی را نمی گیرند. از این رو می توان رصدخانههای مخصوص اختر شناسی رادیویی را در نواحی ابرآلود نیز بنا کرد. در انگلستان ، رصدخانه های رادیویی بزرگی نزدیک منچستر و نیز کمبریج وجود دارد. چندین رصدخانه بزرگ هم ایالات متحد آمریکا ، روسیه و استرالیا مشغول کاوش هستند. از تلسکوپهای رادیویی نه تنها به هنگام شب بلکه در روز نیز می توان استفاده کرد.
ستاره شناسان کشورهای مختلفی از رصدخانه مدرن مائوناکیا در آتشفشانی خاموش در هاوایی استفاده میکنند. این رصدخانه 4200 متر (13800 پا) بالاتر از سطح دریا ، یعنی بالاتر از اکثر ابرها و در جزیرهای محصور با اقیانوس آرام قرار دارد. این شرایط ، مائوناکیا را یکی از بهترین محلهای رصد فضایی دنیا نموده است. مائوناکیا تصاویر فوق العاده شفافی از اجرام سماوی عرضه میکند. بخاطر استقرار این رصدخانه در چنان ارتفاعی ، تلسکوپهایش میتوانند تشعشع مادون قرمز و مایکروویو را که توسط لایههای تحتانی جو متوقف میشوند، دریافت کنند.
در میان تلسکوپهای مائوناکیا 5 دستگاه از بزرگترین تلسکوپهای دنیا از جمله تلسکوپ «کک» وجود دارد که آینهای به عرض 10 متر دارد. |
پرتوهای x نمی توانند در جو زمین نفوذ بیشتری کنند. برای آشکار کردن آنها ، دانشمندان فضاشناس ، رصدخانههای خودکار ساخته اند. این رصدخانهها در ارتفاع بسیار ، زمین را دور می زنند. تلسکوپهای آنها به کمک علائم رادیویی از زمین کنترل میشود و پرتوهای نامرئی x ستارگان را بررسی میکند. اخترشناسان امیدوارند که روزی رصدخانههایی شامل چندین نوع تلسکوپ به دور زمین روانه کنند. در این صورت چگونگی هوا بر کار اخترشناسان تأثیر نخواهد گذاشت.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
در سال 1592 ، هنگامی که در صورت فلکی ذات الکرسی ستاره جدیدی با روشنی قابل توجه ، مشاهده شد، نجوم اروپایی از خواب طولانی برخاسته بود. تیکو براهه جوان ستاره جدید را به دقت رصد کرد و کتاب نواختران (Denous Stella) را نوشت. بر اساس نام این کتاب است که هر ستاره جدید را نواختر خواندهاند.
هسته ستاره ابرغول در حال مرگ در کمتر از یک ثانیه فرو بپاشد. این فروپاشی ناگهانی سبب میشود که موجی ضربهای ایجاد شود که لایههای بیرونی ستاره را به بیرون میاندازد. |
قابل توجهترین نواختری که پس از اختراع تلسکوپ ظاهر شد ستارهای بود که ارنست هارویک (Ernest Hanwrg) اخترشناس آلمانی ، در سال 1885 در کهکشان امراة المسلسه کشف کرد و به آن نام امراة المسلسه S داده شد. اگر این ستاره کمی روشن بود، با چشم غیر مسلح نیز دیده میشد. در آن زمان کسی نمیدانست که کهکشان مزبور چقدر دور است یا چقدر بزرگ است. اما پس از نتیجه گیریهای هابل درباره فاصله این کهکشان ، ناگهان روشنایی نواختری که در سال 1885 ظاهر شده بود، اخترشناسان را دچار حیرت کرد. این نو اختر میبایست 10000 برابر روشنتر از نواختران معمولی باشد. این یک ابر نواختر (Super nova) بود.
رفتار فیزیکی ابر نواختران آشکارا با رفتار فیزیکی نواختران متفاوت است و اخترشناسان به بررسی جزئیات طیفهای آنها مشتاقند. اشکال اصلی این است که ابر نواختران کمیاب هستند. به عقیده تسویکی ، در هر هزار سال بطور متوسط سه ابر نواختر در کهکشان ظاهر میشود. روشنایی یک ابر نواختر (با قدرمطلقهایی از مرتبه 14- و بطور تصادفی 17-) فقط میتواند نتیجه یک انفجار کامل یعنی تکه تکه شدن یک ستاره ، باشد.
زندگی هر ستاره ابر غول دارای بیش از 10 برابر جرم خورشیدی در انفجاری عظیم به نام ابرنواختر پایان مییابد. این انفجار آنچنان پر انرژی است که شاید از کهکشان کاملی با میلیاردها ستاره ، درخشندهتر شود. شاید تا مدتی از دید ناظر زمینی این ابر نواختر به صورت ستاره تازه و خیلی درخشان به نظر برسد. اگر از این انفجار ، هستهای با 1.4 الی 3 جرم خورشیدی بجای ماند، هسته کوچک میشود و ستاره نوترونی تشکیل میدهد. اگر جرم هسته از 3 برابر جرم خورشیدی بیشتر باشد، جاذبه آن را وا میدارد که بیشتر منقبض شود تا حفره سیاه تشکیل بدهد.
انرژی که از انفجار هر ابرنواختر آزاد میشود، میتواند دهها هزار سیاره نظیر زمین را ویران کند. همگی ابر نواخترها ویرانگر نیستند، ولی این انفجارها عناصر بوجود آمده در درون ستارگان را در فضای میان ستارهای منتشر میکنند تا در آنجا به ستارگان و سیارات تازه تبدیل شوند. اتمهای کربن که بخشی از مولکولهای تشکیل دهنده اکثر غذاها و بدنمان هستند، برای نخستین بار در داخل ستارگان ایجاد شدهاند.
به رغم درخشندگی شدید ، در هر قرن فقط دو یا سه ابر نواختر در کهکشانمان مشاهده میشوند. این فهرست برخی از ابرنواخترهای شناخته شده است:
ابر نواختر | صورت فلکی |
ستاره تیکو | ذات الکرسی |
ستاره کپلر | حوا |
سحابی سرطان | ثور |
اس.ان A 1987 | ابر ماژلانی بزرگ |
اس.ان J 1993 | کهکشان M 81 در دب اکبر |
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک