آشکارساز تناسبی نوعی آشکارساز گازی با دو الکترود ، یکی استوانه و یکی سیمی در راستای محور استوانه است. وقتی آشکارساز در ناحیهای (ازلحاظ ولتاژ بین الکترودها) کار کند که در آن شماره یونهای ایجاد شده ، متناسب با انرژی اشعه باشد. در این صورت آشکارساز تناسبی نام دارد. ولتاژ اعمال شده در این آشکارساز بیشتر از ولتاژ اعمال شده در اتاقک یونیزاسیون میباشد که ولتاژ اعمال شده بین دو الکترود به اندازهای بزرگ است که الکترون یونش یافته یک اتم انرژی کافی درحرکت به سوی الکترود آند بدست میآورد و انرژی الکترون به اندازهای است که موجب یونش اتمهایی در مسیر خود میشود.
مشخصات و طرز کار آشکارساز تناسبی
آشکارساز تناسبی از یک الکترود سیلندری و یک رشته سیم مرکزی که معمولا از تنگستن میباشد، ساخته میشوند. به دلیل وضع هندسی دستگاه میدان الکتریکی در فاصله x از سیم برابر است با (E=V/xLn(b/a که درآن V ولتاژ وصل شده بین الکترودها و a و b به ترتیب شعاعهای سیم و الکترود خارجی میباشند. میدان الکتریکی در نزدیک رشته سیم خیلی بزرگتر است و با فاصله از سیم نسبت عکس دارد. بنابراین بیشترین تکثیر در نزدیکی سیم مرکزی انجام میپذیرد. حدود نصف از زوجهای یون در فاصلهای برابر با متوسط طول آزاد و 99% زوجهای یون در هفت برابر متوسط طول آزاد از الکترود مرکزی تشکیل میگردند. زمان جمع آوری الکترونها خیلی کوچک است. به هرحال چون الکترونها خیلی نزدیک به الکترود مرکزی ایجاد میشوند، v? مربوط به جمع آوری الکترون در الکترود مرکزی خیلی کوچک میباشد.
بنابراین سهم بیشتر سقوط پتانسیل مربوط به یونهای مثبت است. وجود این که یونهای مثبت کندتر از الکترونها هستند، پس از عبور مسافت کمی از سیم مرکزی بیشترین سقوط پتانسیل را درفاصله زمانی کوتاه بوجود میآورند. درنتیجه ، پالس مربوط به رسیدن یک زوج یون ابتدا خیلی سریع و سپس به کندی صعود مینماید. گاهی اوقات وقتی محل تشکیل هر یک از یونها نسبت به الکترود مرکزی متفاوت باشد، زمان تشکیل پالسها نامشخص خواهدبود. در چنین حالتی زمان لازم برای الکترونهای مختلف در رسیدن به ناحیه تکثیر یکسان نخواهد بود. تقویت کنندههای مرحله اول یونها را جمع آوری میکنند تا این نامعلومی را کاهش دهند.
زمان تفکیک
در آشکارساز تناسبی ، یونیزاسیون محدود به ناحیه اطراف مسیر اشعه میباشد. فرض کنیم که تابش 1 در زمان t1 وارد شمارنده میشود و تابش مشابه 2 در یک ناحیه دیگر در زمان t2 وارد آشکارساز میشود. در الکترود جمع کننده سقوط پتانسیل خواهیم داشت. اگر تقویت کننده دستگاه آشکارساز بتواند این تغیییر ولتاژ را به عنوان دو علامت الکتریکی تشخیص دهد و اگر این کمترین زمان جدایی باشد که این تشخیص امکانپذیر میگردد، در این صورت t2-t1 زمان تفکیک (Resolving time) برای آشکارساز تناسبی است. بنابراین زمان تفکیک (T) تابع سیستم الکتریکی است.
اگر زمان تفکیک صفر باشد، تغییر تعداد شمارش برحسب تغییر تعداد تابش باید یک خط مستقیم باشد. به هرحال اگر زمان تفکیک بینهایت باشد، این منحنی در سیستم مختصات y-x به محور x متمایل شده و بالاخره آن را قطع خواهد نمود. یعنی وقتی تعداد تابشهایی که وارد آشکارساز میشوند افزایش یابد، تعداد شمارش ثبت شده ابتدا افزایش مییابد و بعد از رسیدن به یک ماکزیمم به طرف صفر میل میکند. در این میزان شمارش صفر ، ولتاژ الکترود جمع کننده ثابت میماند. زیرا که میزان جمع آوری یونها برابر میزان نشت یونها خواهد بود.
آشکارساز تناسبی حساس نسبت به محل ورود اشعه
یکی از تفاوتهای اساسی بین آشکارساز تناسبی و آشکارساز گایگر مولر این است که در آشکارساز تناسبی ، یونیزاسیون محدود به ناحیه کوچکی در اطراف مسیر ذره تابشی است. در صورتی که در آشکارساز گایگر یونیزاسیون در تمام حجم آشکارساز انجام میشود. بنابراین در آشکارسازهای تناسبی ، امکان این که اطلاعاتی در مورد محل اشعه تابشی بدست آوریم، وجود دارد. در این نوع از آشکارسازها ، آند از یک سیم با مقاومت زیاد (معمولا رشته کوارتز با پوششی از کربن) تشکیل میشود. فرض کنیم ذره تابشی در وضعیت x یونهایی در مجاورت آند ایجاد مینماید. این یونها بوسیله آند جمع آوری شده و باعث جاری شدن جریان در دو جهت در طول آند خواهد شد. مقدار جریانی که از هر جهت جاری میشود تابع مقاومت در مسیر میباشد. به دلیل تفاوت جریان در دو انتهای آند پالسهای ایجاد شده در دو انتهای آند در ارتفاع و زمان صعود متفاوت خواهند بود. تفاوت در زمان صعود ، به دلیل تفاوت در ثابت زمانی ، معمولا برای بدست آوردن اطلاعات درباره محل اشعه بکار میرود.
شمارش نوترون با آشکارساز تناسبی
علاوه بر اینکه میتوان از آشکارساز تناسبی برای آشکارسازی ذرات آلفا و بتا استفاده نمود. این آشکارساز میتواند در آشکارسازی نوترونها نیز مورد استفاده قرار گیرند. یک آشکارساز واقعی نوترون معمولا گاز BF خالص و یا مخلوطی از BF3 و یکی از گازهای استاندارد آشکارسازهای گازی ، میباشد. وقتی که نوترون حرارتی بوسیله هسته جذب میشود، دو ذره یونیزه کننده قوی یکی ذره آلفا و دیگری هسته لیتیم که در جهت مخالف حرکت ذره آلفا حرکت میکند، رها میشوند. پالسهای ایجاد شده بوسیله محصولات واکنش هستهای در مقایسه با پالسهای بوجود آمده بسیله تابشهای نظیر اشعه گاما ، دارای ارتفاع نسبتا بزرگ است.
رابطه ارتفاع پالس با نوع ذره
نکتهای که وجود دارد رابطه ارتفاع پالس و نوع ذره است. ارتفاع پالسهای ایجاد شده با ذرات یونیزه کننده سنگین مانند ذرات آلفا ، ممکن است بطور قابل ملاحظهای از پالسهای بوجود آمده بوسیله الکترونهای با انرژی برابر ، متفاوت باشد. این اختلاف تابع نوع اشعه است که معمولا برای آشکارسازهای گازی ، کوچک میباشد. در مورد آشکارسازهای تناسبی و یونیزاسیون و آشکارساز نیم رسانا این حالت وجود دارد.
کلمات کلیدی: هسته ای
|
ماهیت فیزیکی
اجسام معمولی هنگام برخورد با یکدیگر گرم میشوند و گاهی گرمای تولید شده به قدری است که به آسانی میتوان آن را حس نمود. الکترونها نیز هنگام برخورد با مواد ، گرما تولید میکنند و انرژی جنبشی آنها در هنگام تبدیل به انرژی گرمایی شده و دمای جسم افزایش مییابد. برای آنکه این انرژی سبب ذوب یا تبخیر مواد شود، الکترونها باید انرژی لازم برای این کار را داشته باشند. در اینجا درباره چگونگی تولید الکترونها ، افزایش انرژی آنها ، نحوه حرکت و چگونگی متمرکز ساختن آنها بر روی ماده مورد نظر ، ضمن تشریح اجزای تفنگ الکترونی بحث میشود.
یک تفنگ الکترونی از یک چشمه تولید الکترون ، یک میدان الکتریکی مناسب و بوته نگهداری ماده تبخیر شونده تشکیل شده است. چشمه تولید الکترون ، یک سیم داغ از جنس تنگستن میباشد. فلزات بر اثر گرم شدن از خود ، الکترون آزاد میکنند. اثر ادیسون و میزان الکترونهای تولید شده از رابطه ریچاردسون داشمن بدست میآید:
وقتی از یک سیم تنگستن جریان چند آمپری عبور میکند، سیم داغ شده و بنا بر آنچه بیان شد الکترونها آزاد میشوند و الکترونهای تولید شده در اطراف سیم سرگردان میمانند مگر بوسیله یک اختلاف پتانسیل چند هزار ولتی به آنها انرژی داده شود تا به سمت یک هدف معین (ماده تبخیر شونده) شتاب بگیرند. اگر این ولتاژ را V بنامیم انرژی هر الکترون eV داده خواهد بود که از نوع انرژی پتانسیل است و سبب حرکت آن به سمت آند شده و تبدیل به انرژی جنبشی میشود. هنگام برخورد با آند تبدیل به انرژی گرمایی میشود. حرکت این الکترونها به سمت آند ایجاد جریان الکتریکی مینماید که از معادله چاید لانلمیر بدست میآید:
I = PV1/2
P مقدار ثابتی است که بستگی به پارامترهای مختلف از جمله ابعاد ثابتی است که بستگی به پارامترهای مختلف از جمله ابعاد هندسی تفنگ الکترونی دارد. V همان ولتاژ آند است که در حدود چند هزار ولت میباشد. تفنگ الکترونی با توان بالا قابلیت تبخیر اجسام دیرگداز را دارد. تنگستن که در حدود 3400 ºC ذوب میشود بوسیله یک تفنگ الکترونی 2KW قابل تبخیر است.
تفنگهای الکترونی با توانهای بالاتر نیز ساخته شدهاند. تقریبا تمام تفنگهای الکترونی نیاز به یک سیستم چرخان آب برای سرد کردن بوته حاوی ماده تبخیر شونده دارد زیرا در غیر اینصورت بوته نیز بر اثر گرمای زیاد ذوب میشود. برای آنکه پرتوهای الکترونی پرانرژی با سطوح جانبی بوته و سرد کردن برخورد نکنند و انرژی آنها هدر نرود از سیستمهای مختلف برای متمرکز کردن آنها روی ماده تبخیر شونده استفاده میشود.
یک سیستم ساده استفاده از محافظ الکتریسیته ساکن است که بطور ساده از یک توری استوانهای تشکیل شده و بوته را احاطه میکند. این محافظ الکترونهای اولیه پرتاب شده را جذب کرده و ولتاژ منفی بالایی پیدا میکند بطوری که بقیه الکترونها را از خود دفع کرده و در محل بوته متمرکز میکند و به این ترتیب طرح تفنگ الکترونی مفیدتر و سبب افزایش کارایی سیستم میشود.
تفنگهای الکترونی در توانهای مختلف ساخته میشوند. سپس مواد دیرگدازی که ، به روشهای دیگر قابل تبخیر نیستند با تفنگهای الکترونی توان بالا ، قابل تبخیر میباشند. زیرا ماده بطور مستقیم بوسیله پرتو الکترونی گرم میشود و نیاز به بوته دیرگداز نیست علاوه بر آن بوته با آب خنک میشود.
همین مطلب یعنی گرمایش مستقیم بوسیله الکترونها سبب میشود لایههای نازک ایجاد شده عاری از هر نوع آلودگی باشند که در کارهای حساس اپتیکی و فیلترهای اپتیکی از تفنگ الکترونی برای تبخیر مواد استفاده میشود. ادوات الکترونیک ، حافظه مغناطیسی و اپتیکی استفاده میشود. این روش یکی از متداولترین روشهای نشاندن لایههای رسانا و دیالکتریک در محصولات الکترونیکی مانند مدارات مجتمع MCM , VLSI است.
کلمات کلیدی: فیزیک نوین
|
ریشه لغوی
میکروسکوپ به معنی کپی یا ثبت کوچکتر ذره است و ریشه در زبان لاتین دارد و از آن برای بررسی ذرات اتمی و زیر اتمی استفاده میشود.
میکروسکوپ الکترونی نوعی میکروسکوپ مرکب است. اولین میکروسکوپ مرکب ، احتمالا در سالهای 1600 میلادی توسط دو نفر هلندی به نام هانس و زاکاریاس جنس ساخته شد. درسال 1873 ارنست آبه ثابت کرد که برای تشخیص دقیق دو ذره نزدیک به هم ، طول موج نور نباید بیشتر از دو برابر فاصله دو ذره از یکدیگر باشد. بالاخره درسال 1939 اولین میکروسکوپ الکترونی ساخته شد.
میکروسکوپهای اولیه که میکروسکوپ ساده نام داشت، شامل فقط یک عدسی بودند اما میکروسکوپ الکترونی ، که میکروسکوپ مرکب است از ترکیب حداقل دو عدسی بوجود آمده است. در طول قرن هیجدهم میکروسکوپ در زمره وسایل تفریحی به شمار میآمد. با پژوهشهای بیشتر پیشرفتهای قابل توجهی در شیوه ساختن عدسی شئی حاصل شد. بطوری که عدسیهای دیگر یصورت ذره بینهای معمولی نبودند بلکه خطاهای موجود در آنها که به کنجهایی معروف هستند، دفع شدهاند و آنها میتوانستند جرئیات یک شی را دقیقا نشان دهند. پس از آن در طی پنجاه سال ، پژوهشگران بسیاری تلاش کردند تا بر کیفیت و مرغوبیت این وسیله بیافزایند. بالاخره ارنست آبه توانست مبنای علمی میزان بزرگنمایی میکروسکوپ را تعریف کند.
بدین ترتیب میزان بزرگنمایی مفید آن بین 50 تا 2000 برابر مشخص شد. البته میتوان میکروسکوپهایی با بزرگنمایی بیش از 2000 برابر ساخت. مثلا قدرت عدسی چشمی را بیشتر کرد. اما قدرت تفکیک نور ثابت است و درنتیجه حتی بزرگنمایی بیشتر میتواند دو نقطه از یک شی را بهتر تفکیک کند. هر چه بزرگنمایی شی افزایش یابد به میزان پیچیدگی آن افزوده میشود. بزرگنمایی شی در میکروسکوپهای تحقیقاتی جدید معمولا 3X ، 6X ، 10X ، 12X ، 40X و 100X است. در نتیجه بزرگنمایی در این میکروسکوپ بین 18 تا 1500 برابر است. چون بزرگنمایی میکروسکوپ نوری از محدوده معینی تجاوز نمیکند برای بررسی بسیاری از پدیدههایی که احتیاج به بزرگنمایی خیلی بیشتر دارند مفید است. تحقیقات بسیاری صورت گرفت تا وسیله دقیق تری با بزرگنمایی بیشتر ساخته شود. نتیجه این پژوهشها منجر به ساختن میکروسکوپ الکترونی شد.
میکروسکوپ مرکب از یک لوله تشکیل شده که در دو انتهای آن دو عدسی شئی نزدیک به شی مورد مطالعه و عدسی چشمی قرار دارد. تصویری که توسط عدسی شئی بوجود میآید، بوسیله عدسی چشمی بزرگتر میشود. به این جهت بزرگنمایی آن بیش از قدرت یک عدسی است. در میکروسکوپهای پیشرفته ، دستگاه نوری پیچیده تر است. بدین ترتیب که در آنها علاوه بر لامپ ، یک کندانسور (مجموعه عدسیهای متمرکز کننده نور) و یک دیافراگم که شدت نور را کنترل میکند، قرار داده شده است. لامپی که در این نوع میکروسکوپها مورد استفاده قرار میگیرد، با ولتاژ کم کار میکند. لامپهای فراوانی برای این منظور وجود دارند که هرکدام نوری با شدت و طول موج مورد نظر تامین میکنند. بنابراین برای تفکیک دو نقطه نزدیکتر از 2500 آنگستروم باید از میکروسکوپ الکترونی استفاده کرد.
زیرا طول موج الکترون از طول موج نور کمتر است. اولین میکروسکوپ الکترونی که ساخته شد، درست مانند میکروسکوپ نوری که شعاع نور را از داخل نمونه مورد مطالعه عبور میدهد، شعاع الکترون را از داخل مقطع بسیار نازکی عبور میدهد. چون تراکم مواد در تمام قسمتهای نمونه مورد مطالعه یکسان نیست، میزان الکترونی که از قسمتهای مختلف عبور میکند متفاوت است. درنتیجه تصویری از قسمتهای تاریک و روشن آن بدست میآید. میکروسکوپ الکترونی دارای یک قسمت لولهای شکل است که الکترون میتواند آزادانه از آن عبور کند. در قسمت بالای لوله یک قطب منفی الکتریکی به شکل رشته سیم نازک وجود دارد که جنس آن از تنگستن است. این قسمت آنقدر حرارت داده میشود تا بتواند از خود الکترون آزاد کند.
این عمل با ایجاد اختلاف پتانسیل از 20000 تا 100000 ولت بین کاتد و آند صورت میگیرد. در نتیجه یک شعاع الکترونی بسوی پایین قسمت لولهای شکل شتاب داده میشود. به این سیستم تفنگ الکترونی میگویند. در طول لوله عدسیهایی همگرا اندازه و روشنایی شعاع الکترونی را قبل از برخورد با نمونه مورد مطالعه کنترل میکنند. مقطع مورد بررسی روی یک صفحه مشبک دایره شکلی قرار داده میشود. شعاع الکترونی پس از عبور از مقطع و قبل از این که به حد بزرگنمایی نهایی برسد، از میان عدسیهایی شئی عبور کرده و تنظیم میشود. سپس توسط عدسیهایی بر روی صفحه زیر میکروسکوپ منعکس میشود. چگالی بزرگنمایی بیشتر میکروسکوپها از 50 تا 800000 برابر است. صفحه زیر میکروسکوپ از مواد فسفردار (فسفید روی) پوشانیده شده که در مقابل پرتو الکترون از خود نور تولید میکند. در زیر این صفحه یک دوربین عکاسی قرار دارد که از تصویر روی صحنه عکس میگیرد.
کلمات کلیدی: فیزیک نوین
مفاهیم پایه
در فیزیک یک اصل کلی هست که میگوید برای متلاشی کردن یک سیستم یا مجموعه پایدار باید کار انجام داد، مثلا اگر سیستم از نوترونها و پروتونها که هسته اتم را ایجاد میکنند پایدار باشد، برای از هم سوا کردن آنها باید انرژی مصرف نمود. بر طبق قانون هم ارزی جرم و انرژی : جرم کلی یک هسته پایدار باید کمتر از مجموع جرمهای جداگانه نوترونها و پروتونهای تشکیل دهنده آن باشد و این اختلاف جرم باید معادل انرژی باشد که جهت متلاشی کردن کامل هسته لازم است، این انرژی موسوم به انرژی همبستگی اتم میباشد.
اکنون مقدار جرم نوترون و پروتون بر حسب گرم و همچنین بر حسب واحد جرم اتمی به دقت معلوم شده است، بنابرا ین چنین به نظر میرسد که هر گاه عدد جرمی و عدد اتمی عنصری معلوم باشد، میتوانیم جرم اتمی آنرا به کمک فرمول زیر حساب نماییم:
در این فرمول M جرم اتمی عنصری است که Z عدد اتمی و A عدد جرمی آن است و مقادیر 1.0076 و 1.0089 نیز به ترتیب جرم پروتون و نوترون بر حسب واحد جرم اتمی (amu) هستند. هنگامی که وجود عناصر ایزوتوپ به تحقق پیوست و توانستند ایزوتوپهای مختلف را مستقیما و دقیقا اندازه بگیرند، دریافتند که همیشه مقدار جرمی که از اندازه گیری عملی بدست میآید کمتر از مقداری است که از طریق محاسبه نتیجه میشود.
بنابراین باید قبول کرد که در هر اتم یک نقص جرمی (Mass Defect) وجود دارد، یعنی مقداری از جرم پروتونها و نوترونهایی که هسته آنرا تشکیل میدهند، در ضمن تشکیل هسته از بین رفتهاند. بنا بر نظریه نسبت ، نقص جرمی هر اتم در ضمن تشکیل هسته آن به انرزی تبدیل میگردد و مقدار این انرژی مساوی است با:
هسته اتم هلیوم از دو عدد پروتون و دو عدد نوترون تشکیل شده است، بنابراین جرم اتمی آن باید مساوی باشد با: 4.033 = 1.0089×2 + 1.0076×2 ، ولی اندازه گیریهای بسیار دقیق جرم اتمی هلیوم را 4.0028 نشان میدهد. بنابراین در ضمن تشکیل هسته هلیوم باید معادل 0.0302 واحد جرم اتمی به انرژی تبدیل شده باشد مقدار این انرزی بر حسب ارگ برای هر اتم گرم مساوی است با:
هرگاه این انرزی را بر حسب الکترون ولت حساب نماییم، مقدار E = 28 MeV را بدست میآوریم که انرزی فوق العادهای است. همچنین برای متلاشی ساختن یک هسته هلیوم به دو پروتون و دو نوترون باید این مقدار انرزی مصرف نمود. چنانکه میبینیم هسته اتم هلیوم بسیار پایدار است و بدین دلیل آنرا در آزمایشگاههای هستهای برای بمباران کردن و متلاشی ساختن هستههای دیگر بکار میبرند.
هرگاه انرزی همبستگی هسته عناصر مختلف را در نظر بگیریم ، میبینیم که مقدار آن تقریبا متناسب با عدد جرمی تغییر میکند، فقط در اتمهای سبک مقدار نسبی این انرژی برای عناصری که عدد جرمی آنها مضرب عدد 4 است (یعنی جرم هسته هلیوم) اندکی بیشتر است. هسته این عناصر از ذره آلفا تشکیل شده و بسیار پایدار است، هر گاه مقدار انرژی همبستگی هر هسته را بر عدد جرمیاش تقسیم نماییم عددی بدست میآید که معرف پایدار بودن هسته مربوطه است و هر چه این عدد بزرگتر باشد هسته پایدارتر است.
دیاگرامهای انرژی همبستگی هستهها نشان میدهد که عناصری با عدد جرمی متوسط انرژی همبستگی نسبی بیشتر دارند و از سایر عناصر پایدارترند (هستههایی که عدد جرمی آنها بین 40 و 100 میباشد). در واکنشهای هستهای هر واکنشی که انرژی همبستگی نسبی آن بیشتر باشد دارای مولد انرژی بیشتری خواهد بود.
هرگاه اتمهای سبک در هم بیامیزند و اتم متوسط تشکیل دهند (تشکیل اتم هلیوم بوسیله 4 تا اتم هیدروژن) و همچنین در صورتی که یک هسته سنگین به دو هسته متوسط تقسیم شود، انرژی بدست خواهد آمد. پیلهای اتمی که در آنها از اورانیوم استفاده میشود از این نوع میباشد. بهتر است بدانید بخاطر اینکه انرژی اتمی در داخل اتمها در حد داخل هستههای اتمی وجود دارد (بخاطر برد کوتاه نیروهای هستهای) به زبان علمی نام انرژی هستهای به آنها اطلاق میشود که از تجزیه مواد رادیو اکتیو طبیعی مقادیر بسیار مهمی از این انرژی تولید میشود.
کلمات کلیدی: هسته ای
تا چندی پیش دو اصل کلی و مستقل از یکدیگر پایه دانش جدید را تشکیل میداد: یکی اصل بقای جرم بود و دیگری اصل بقای انرژی در نیمه دوم قرن هجدهم میلادی لاوازیه دانشمند فرانسوی پس از یک سلسله تجربیات دریافت که مقدار جرم مادی که در فعل و انفعالات شیمیائی دخالت دارند همواره ثابت میماند و این مشخصه مواد را در قانون زیر به نام قانون بقای جرم خلاصه نمود.
هیچ جرمی معدوم نمیشود و هیچ جرمی نیز از عدم بوجود نمیآید و یا به عبارت دیگر مقدار جرم مادی که در عالم وجود دارد همواره ثابت است اصل بقای انرژی میگوید؛ انرژی هر دستگاه معین مقدار ثابتی دارد، نمیتوان انرژی را خلق کرد و نه آنرا از بین برد، فقط اقسام آن میتوانند به یکدیگر تغییر شکل دهند.
همزمان جرم آن نیز کاهش مییابد. |
در اوایل قرن بیستم یعنی در سال 1905 نظریه نسبیت (Theory of Relativity) آلبرت انیشتین خدشهای به دو اصل فوق الذکر وارد ساخت زیرا یکی از نظریات نسبیت این است که جرم و انرژی مانند بخار آب و آب که دو شکل مختلف از یک ماده هستند یک چیز واحد بوده و قابل تبدیل به یکدیگر میباشند. بنابراین مقدار جرم مادی را که در عالم وجود دارد نمیتوان ثابت دانست، بلکه از تطبیق نظریه نسبیت با اصل بقای جرم و اصل بقای انرژی میتوان قانون کلی تری نتیجه گرفت که مطابق آن:
" مجموع جرم مادی و مقدار انرژی که در عالم وجود دارد همواره ثابت است."به عقیده آلبرت انیشتین مقدار E که معرف انرژی است و از کلمه لاتین Energy اقتباس شده است، یعنی انرژی هم ارز با جرم m بوسیله رابطه زیر بیان میگردد E = m c2 که در آن E انرژی و m جرم و C سرعت نور در خلا میباشند.
باید بدانید که رابطه E = m c2 چگونگی تبدیل یک کیلو گرم آب به انرژی را بیان نمیکند بلکه فقط اصلی است که هم ارزی جرم و انرژی را بیان میکند، نه اینکه جزئیات نحوه تبدیل آنها را آشکار سازد. رابطه اخیر ایجاب میکند که برای انرژی نیز جرمی قائل شویم . انرژی گرمایی که ضمن احتراق بدست میآید دارای جرم است، ولی این جرم به اندازهای کوچک است که حتی با دقیقترین ترازوها نمیتوان آنرا سنجید مثلا چند نانوگرم (بیلیونوم گرم) در مورد احتراق 12 گرم ذغال. اگر بوسیله حرارت یک تن آب صفر درجه را به 100 درجه برسانیم یعنی به آن 100 میلیون کالری انرژی بدهیم جرم آن فقط 0.004 میلیگرم اضافه میشود.
کلمات کلیدی: هسته ای