|
مقدمه
این تعارض جوهر مانای ذره گونه که با انتشار موج - ذره رخ میدهد، نظریه کوانتوم توصیف عینی یابد، آنگاه میتوانیم موقعیتهای آن را در لحظات پی در پی مشخص و مسیر آن را معین کنیم. اما ذراتی که مسیرهای مشخصی را طی میکنند، مشخصه نقش تداخلی موج گونه آنها را برای هر نوع مادهای که واقعا قابل مشاهده باشد، ایجاد نمیکند. در آزمایشگاه ، این نقشها همچون نقشی از تیک تاکهای آرایهای از آشکار سازها مشاهده میشود. تمهیدات مستند نظریه کوانتومی این نقشها را بوسیله یک تابع موج در فرمالیزم ریاضی آن نظریه بوجود میآورد.
این تابع موج احتمال آشکار سازی یک تیک تاک را توصیف میکند و چشم به راه یک شیء "حقیقی" نیست. بنابراین ، نظریه کوانتومی با نفی اینکه "موج" یا "ذره" "حقیقی" هستند، مسأله موج - ذره را حل میکند. به علاوه ، نظریه کوانتومی با آنچه که از معانی متعارف و رسمی آنها برداشت میشود. مفهوم ماده گاهی موج و گاهی ذره است را ندارد.
بر اساس اصل دوبروی ، در مورد ذرات دو حالت ذرهای و موجی در نظر گرفته میشود،
که البته این خاصیت در دنیای میکروسکوپی بیشتر مورد مطالعه است. به عنوان مثال ، اگر ذرهای به جرم یک گرم که با سرعت معمولی در حال حرکت است، در نظر بگیریم طول موج منتسب به این ذره ، چنان کوچک خواهد بود که اصلا قابل ملاحظه نیست. اما در مورد ذراتی مانند الکترون ، این طول موج قابل توجه است. بنابراین با توسل به این اصل میتوان تابش الکترومغناطیسی را نیز متشکل از ذراتی دانست که این ذرات را فوتون میگویند.
نظریه پلانک در ارتباط با بستههای انرژی تابشی ، تا اندازهای مبهم بود و فقط به عنوان مبنایی برای توزیع آماری انرژی میان طول موجهای مختلف در طیف الکترومغناطیسی بکار میرفت. پنج سال بعد از "پلانک" ، "آلبرت انیشتین" توانست این مفهوم را به صورت مشخصتری بیان کند. انیشتین مفهوم کوانتومی نور را برای توجیه اثر فوتوالکتریک بکار برد. بر این اساس ، فوتونها که دارای انرژی معینی هستند، بعد از برخورد با الکترونهای اتم ، انرژی خود را به آنها داده ، خود از بین میروند. این امر میتواند به عنوان یک مسئله برخورد میان دو ذره با استفاده از نظریه برخورد توضیح داده شود.
بعد از برخورد ، فوتون از بین میرود و الکترون با انرژیی که از فوتون میگیرد، از ماده جدا میشود و سبب ایجاد یک جریان فوتوالکترونی در مدار خارجی میگردد. مقدار جریان در مدار خارجی ، بسته به تعداد فوتونهایی که بر سطح ماده موجود در کاتد تابیده میشود، متفاوت خواهد بود.
تأییدی دیگر بر وجود فوتون
آزمایش دیگری که توانست وجود فوتونها را بصورت تجربی به اثبات رساند، مربوط به آزمایش است که توسط "کامپتون" انجام شد. این آزمایش که بعدها نام اثر کامپتون را بر خود گرفت، به این صورت بود که تابش الکترومغناطیسی یا فوتونها توسط مواد مختلف پراکنده میشود. به بیان دیگر ، در این آزمایش فوتون بعد از تابش مقداری از انرژی خود را به یک الکترون تقریبا آزاد منتقل میکرد و خود با انرژی کمتر در راستای دیگر منحرف میشد. نتایج این آزمایش که با استفاده از مفهوم کوانتومی نور صورت میگرفت، با نتایج تجربی کاملا تطابق داشت.
واقعیت جرم فوتون ، به خاصیت عکس مجذوری قانون کولن بر میگردد. بر اساس قانون کولن ، نیروی الکتریکی که دو ذره باردار به یکدیگر وارد میکنند، نیرویی است که با مجذور فاصله بین آنها نسبت معکوس دارد. اما این مطالب در تمام شرایط دقیقا درست نیستند، یعنی در فواصل خیلی کوچکتر انحرافاتی وجود دارد و این نیرو دقیقا عکس مجذوری نیست. در این حالت باید فوتونها را ذراتی دارای جرم بدانیم. اما در موارد دیگر که تقریبا بیشتر موارد را شامل میشود، این نیرو دقیقا عکس مجذوری است. بنابراین در این حالت باید فوتونها را ذراتی بدون جرم تصور کنیم.
کلمات کلیدی: کوانتوم
هسته مجموعهای از ذرات باردار با بار مثبت میباشد که در یک حجم فوقالعاده کوچک تمرکز یافتهاند و با نیروی بسیار قوی و برد کوتاه (نیروی برهمکنش قوی هستهای) بهم مقید شدهاند که این مجموعه متراکم ، کل جرم اتم را در خود دارد و الکترونها در اوربیتالهایی ، حول این نقطه چگال مرکزی در حال دوران هستند. |
اجزای اصلی هسته
ذرات اساسی که کلیه هستهها از آنها ترکیب شده است، عبارتند از:
این خواص بر دونوع است که عبارتند از :
خواص مستقل از زمان : خواصی هستند که وابسته به زمان نیستند. مانند جرم ، اندازه ، بار
خواص وابسته به زمان : خواصی هستند که وابستگی به زمان دارند. مانند واپاشی پرتوزا و واکنشهای هستهای
جرم و بار هسته
جرم هسته را میتوان با این فرمول زیر پیدا کرد : M=Z×Mh + N×Mn که در آن ، M جرم هسته ، Mh جرم یک اتم هیدروژن یا جرم پروتون و Mn جرم نوترون میباشند.
شعاع هسته
آزمایشهای دقیقتر با بهرهگیری از پراگندگی ذرات هستهای دیگر و الکترونها نشان دادهاند. شعاعی که در آن ، آثار هستهای ظاهر میشود، از رابطه زیر بدست میآید:
R=R0 A1/3
که در آن ، R0 ثابت شعاع دارای این مقادیر است:R0=1.2 F , 1.4 F که در آن F نماد فرمی ، واحد طول هستهای است و A جرم اتمی میباشند.
خواص دینامیکی هسته
پروتون
الکترون
نگاه اجمالی
الکترونی که از اتم جدا شده و به آن بستگی ندارد. الکترونهای بیرونیترین لایههای اتمهای فلزات بستگی کمتری نسبت به اتمهای خود دارند و با گرفتن انرژی کوچکی از این اتمها کنده میشوند و به شکل تودهای از ابر یا گاز ، شبکههای اتمی فلزات را در بر میگیرند. هنگامی که الکترونهای آزاد در میدان الکتریکی قرار گیرند، جریان الکتریکی بوجود میآید.
الکترون اوژه نوعی الکترون آزاد است که از اتم یا یون گسیل میشود. الکترون اوژه از بازآرایی الکترونهای مقید از اتم یا یون اولیه سرچشمه میگیرد. این بازآیی از واکنش الکترون - الکترون که مولد نیروی دافعه است و میتواند بر نیروی جاذبه ناشی از برهمکنش الکترون - هسته فایق آید، صورت میگیرد. با آن همه بازآیی یاد شده تنها هنگامی میتواند رخ دهد که حداقل جای یک الکترون در تراز انرژی معین اتم یا یون اولیه خاصی باشد و در تراز با انرژی بیشتر از انرژی تهی جا حداقل دو الکترون وجود داشته باشد، یکی از الکترونهای تراز بالاتر به تراز دارای تهی جا سقوط میکند و الکترون دیگر به صورت الکترون آزاد از اتم خارج میشود.
هر یک از الکترونهای لایه خارجی اتم که در ایجاد پیوندهای شیمیایی شرکت میکنند.
اتمهای هر فلزی با پیوندهای کووالانسی که راستای کاملا مشخص ندارند و میان چندین اتم پخش شدهاند، به همدیگر مقید هستند. بنابراین الکترونهایی که قیدشان در ضعیفترین حد است (الکترون ظرفیت) میتوانند در سراسر فلز حرکت کنند. این الکترونهای متحرک که الکترون رسانش نامیده میشود در خواص الکترونی و انتقال گرما در فلزها دخالت دارد.
که در آن e بار الکترون ، E میدان الکتریکی ، T زمان میانگین بین برخورد (یا زمان واهلش) و m جرم الکترون است.
اسپین یکی از ویژگیهای درونی ذرات است. اسپین خاصیتی است که به غیر صفر بودن تکانه زاویهای ذره ساکن مربوط میشود، اینکه الکترونها دارای اسپین هستند از اهمیت خاصی برخوردار است. اسپین الکترون در شیمی و در جنبههایی از رفتار ماده معمولی ، بویژه در پدیدههای مغناطیسی نقش اساسی ایفا میکند. الکترون حامل اسپین 2/1 هسته و این بدان معنی است که برای الکترون ساکن اندازه گیری تکانه زاویهای نسبت به یک محور مفروض به یکی از دو نتیجه ممکن ħ/2 ± میانجامد ħ = h/2π ثابت کاهیده پلانک است.
اسپین الکترون دو پیامد نیزدیکی دارد: یکی اینکه الکترونها را به صورت آهنربایی میکروسکوپیکی در میآورد، که هم میدان مغناطیسی تولید میکنند و هم در برابر میدان مغناطیسی واکنش نشان میدهند. دیگر اینکه یک درجه آزادی داخلی نمیتوانند حالت کوانتمی یکسان داشته باشند و این خاصیتی است به فرمیون بودن الکترونها مربوط میشود.
فیزیک کلاسیک ، الکترونها را ذراتی در نظر میگیرد با جرم و بار معین ، برهمکنش الکترون با میدانهای الکتریکی و مغناطیسی را میتوان بر حسب حرکت ذره توضیح داد. آزمایشهای اولیه با لامپ پرتوی کاتودی که باریکه الکترون را فراهم میآورد، نشان داد که اجسام کوچکی که در لامپ قرار داده شوند روی پرده فسفری سایه واضح میاندازند. این آزمایش با تصویر کلاسیکی الکترون به صورت ذره کاملا سازگار است.
طول موج دوبروی الکترونی با انرژی 10000v یعنی الکترونی که با پتانسیل 1000v شتاب گرفته باشد، برابر 4X10 متر است. چون این مقدار بسیار کوچکتر از اندازه جسم است، اثر پراش بسیار کوچکتر از آن است که دیده شود. بلافاصله بعد از اینکه دوبروی اظهار نظر کرد که ماده باید خواص موجی از خود نشان دهد، والتر الساسر اعلام کرد که پراش الکترونها باید در سطح بلور قابل مشاهده باشد.
نظریه جهانهای موازی
اندیشه وجود یک خود دیگر نظیر آنچه که در بالا شرح آن رفت عجیب و غیر معقول به نظر میرسد، اما آنگونه که از قرائن بر میآید انگار مجبوریم آن را بپذیریم. زیرا مشاهدات نجومی از این اندیشه غیر مادی پشتیبانی میکنند. بنابر این پیش بینی سادهترین و پر طرافدارترین الگوی کیهان شناسی که امروزه وجود دارد، این است که هر یک از ما یک جفت (همزاد) داریم که در کهکشانی که حدود 10280 متر دورتر از زمین قراردارد، زندگی میکنند.
این مسافت آنچنان زیاد است که بطور کامل خارج از هر گونه امکان بررسیهای نجومی است، اما این امر واقعیت وجود نسخه دوم ما را کمرنگ نمیکند. این مسافت بر اساس نظریه احتمالات مقدماتی برآورده شده و حتی فرضیات خیال پردازانه فیزیک نوین را نیز در بر نگرفته است.
اینکه فضا بیکران است و تقریبا بطور یکنواخت از ماده انباشته شده است، چیزی که مشاهدات هم آن را تأیید میکنند. در فضای بی کران حتی غیر محتملترین رویدادها نیز بالاخره در جایی ، اتفاق خواهند افتاد. در این فضا ، بینهایت سیاره مسکونی دیگر وجود دارد، که نه تنها یکی بلکه تعداد بیشماری از آنها مردمانی دارند که شکل ظاهری ، نام و خاطرات آنها دقیقا همان هاست که ما داریم. به ساکنانی که تمامی حالتهای ممکن ار گزینههای موجود در زندگی ما را تجربه میکنند. من و شما احتمالا هرگز خودهای دیگران را نخواهیم دید.
دورترین فاصلهای که ما قادر به دیدن آن هستیم، مسافتی است که نور در مدت 14 میلیارد سال که از انفجار بزرگ و آغاز انبساط عالم سپری شده است، طی میکند. دورترین اجرام مرئی هم اکنون حدود 4x1026 متر دور تر از زمین قرار دارند. این فاصله که عالم قابل مشاهده توسط ما را تعریف میکند. بطور مشابه ، عالمهای خودهای دیگر ما کراتی هستند به همین اندازه ، که مرکزشان روی سیاره محل سکونت آنهاست. چنین ترکیبی سادهترین و سر راستترین نمونه از جهانهای موازی است. هر جهان تنها بخشی کوچک از "جهان چند گانه" بزرگتر است.
با این تعریف از جهان ممکن است شما تصور کنید که مفهوم جهان چند گانه تا ابد در محدوده قلمرو متا فیزیک باقی خواهد ماند. اما باید توجه داشت که مرز میان فیزیک و متا فیزیک را این مسأله که یک نظریه از لحاظ تجربه قابل آزمون است، یا خیر تعیین میکند نه این موضوع که فلان نظریه شامل اندیشههای غریب و ماهیتهای غیر قابل مشاهده است. مرزهای فیزیک به تدریج با گذر زمان فراتر رفته و اکنون مفاهیمی است بسیار انتزاعی تر نظیر زمین کروی ، میدان الکترو مغناطیسی نامرئی ، کند شدن گذر زمان در شرعتهای بالا ، برهمنهی کوانتومی ، فضای خمیده و سیاهچاله را در بر گرفته است. طی چند سال گذشته مفهوم جهان چند گانه نیز به این فهرست اضافه شده است.
پایه این اندیشه بر نظریاتی است که امتحان خود را به خوبی پس دادهاند. نظریاتی همچون نسبیت و نظریه مکانیک کوانتومی ، افزون بر آن به دو قاعده اساسی علوم تجربی نیز وفادار است. که پیش بینی میکنند و میتوانند آن را دستکاری نمایند.
دانشمندان تا کنون چهار نوع جهان موازی متفاوت را تشریح کردهاند. هم اکنون پرسش کلیدی وجود یا عدم جهان چند گانه نیست، بلکه سوال بر سر تعداد سطوحی است که چنین جهان میتوان داشته باشد. یکی از نتایج متعدد مشاهدات کیهان شناسی اخیر این بوده است که جهانهای موازی دیگر مفهومی خیال پردازانه و انتزاعی صرف نیست. به نظر میرسد که اندازه فضا بینهایت است. اگر اینگونه باشد، بالاخره در جایی از این فضا هر چیزی که امکان پذیر باشد واقعیت خواهد یافت. اصلاً مهم نیست که امکان پذیری آن تا چه حد نامتحمل است.
فراسوی محدوده دید تلسکوپهای ما ، نواحی دیگری از فضا کاملا شبیه آنچه که پیرامون ماست وجود دارند، آن نواحی یکی از انواع جهانهای موازی هستند. دانشمندان حتی میتوانند محاسبه کنند که این جهانها بطور متوسط چقدر با ما فاصله دارند و مهمتر از همه اینکه تمامی اینها فیزیک حقیقی و واقعی است. زمانی که کیهان شناسان با نظریاتی روبرو میشوند که از استحکام لازم برخوردار نیستند، نتیجه میگیرند که جهانهای دیگر میتوانند ویژگیها و قوانین فیزیکی کاملا متفاوتی داشته باشند. وجود این جهانها بسیاری از جنبههای پرسش بنیادی در خصوص ماهیت زمان و قابل درک بودن جهان فیزیکی را پاسخ داد.
کلمات کلیدی: اختر فیزیک، هواشناسی و اختر فیزیک
تغییرات آنتالپی مربوط به تراکم یونهای گازی شکل مثبت و منفی به یک بلور را انرژی شبکه آن بلور مینامند. برای مثال انرژی شبکه کلرید سدیم 788- کیلو ژول بر مول است. |
علامت انرژی شبکه
از آنجا که در اینگونه فرآیندها همواره انرژی آزاد میشود، تمام انرژیهای شبکه علامت منفی دارند. برعکس انرژی مورد نیاز برای جدا کردن یونهای یک مول بلور برابر انرژی شبکه با علامت مثبت است.
اهمیت انرژی شبکه را با استفاده از روش تحلیلی که توسط ماکس بور و فرتینر هابر در سال 1917 جدا از یکدیگر تکوین یافت، میتوان مشاهده کرد. چرخه "بور - هابر" برای تولید کلرید سدیم از عناصر مربوط مورد استفاده قرار میگیرد. تحلیل "بور - هابر" بر اساس قانون هس قرار دارد. قانون هس میگوید که تغییر آنتالپی هر نوع واکنش شیمیایی مقداری است ثابت ، خواه واکنش در یک مرحله و خواه در چند مرحله صورت گیرد.
تغییر آنتالپی تولید یک مول در یک مرحله از و ، آنتالپی تشکیل این ترکیب است.
میتوانیم تولید یک مول را از و در چند مرحله تصور کنیم. جمع جبری مقادیر ΔH در این مراحل باید بر اساس قانون هس برابر آنتالپی تشکیل که مراحل ΔH واکنش در یک مرحله است، باشد. مراحل مزبور به قرار زیر است.
مورد استفاده چرخه "بور - هابر"
از چرخههای "بور - هابر" ، برای تحلیل فرآیندها و پی بردن به اینکه تغییر در یک مرحله چه اثری در کل فرآیند خواهد داشت، استفاده میکنند. این چرخهها را میتوان برای محاسبه تغییر آنتالپی یکی از مراحل یا کل فرآیند نیز بکار برد.
بطورکلی مقدار انرژی شبکه به دو عامل بستگی دارد:
هنگام تشکیل بلور هر چه بار یونهای بوجود آورنده بلور بیشتر باشد، انرژی شبکه زیادتری آزاد میشود. زیرا هر چه قدر مطلق بارهای مثبت و منفی بزرگتر از هم باشد، به همان نسبت جاذبه بین آنها قویتر و انرژی آزاد شده بیشتر است.
هر چه فاصله دو بار ناهمنام کمتر باشد، نیروی جاذبه قویتر و انرژی آزاد شده بیشتر خواهد بود. لذا انرژی شبکه بلور ناشی از یونهای کوچکتر که توانایی نزدیکتر شدن دارند، بیش از انرژی شبکه بلور ناشی از یونهای بزرگتر است، به شرط اینکه بار یونهای ترکیب یکسان باشد. از آنجا که یون کوچکتر از یون است، اختلاف انرژی شبکه (NaCl (-788Kj/mol و (CsCl (- 669Kj/mol شگفت آور نیست.
کلمات کلیدی: ترمو دینامیک
گرمای جذب شده بوسیله واکنشی که در فشار ثابت انجام میگیرد برابر با تغییر آنتالپی است. آنتالپی ، همانند انرژی داخلی ، تابعی از حالت سیستم و مستقل از راهی است که به آن حالت میرسد. یعنی تابع حالت و یک کمیت شدتی است. |
کار در واکنشهای شیمیایی
برای واکنشهای شیمیایی عادی ، کار عموما ناشی از تغییرات فشار ، حجم است. اگر سیستم (به علت گاز) منبسط شود، در برابر فشار اتمسفر کار انجام میدهد واین نمونهای از کار فشار - حجم است. جمله PV دارای ابعاد کار است. فشار که نیرو بر واحد سطح است، بر حسب نیوتن بر متر مربع N/m2 بیان میشود. اگر حجم بر حسب متر مکعب m3 بیان شده باشد، حاصلضرب PV عبارت خواهد بود از:
(PV=(N/m2)(m3)=N.m(J
نیوتن متر (یک ژول) یک واحد کار است، زیرا کار به صورت حاصلضرب نیرو (نیوتن) در فاصله (متر) تعریف شده است. به طریق مشابه میتوان گفت که لیتر اتمسفر نیز واحد کار است. اگر فشار ثابت بماند و حجم بر اثر انبساط از VA به VB برسد، کار انجام شده عبارت خواهد بود از:
W=P(VB-VA)=P∆V
کار انجام شده در حجم ثابت
هیچ گونه کار فشار ، حجمی نمیتواند بوسیله فرآیندی که در حجم ثابت صورت میگیرد، انجام شود، W=0 خواهد بود. پس در حجم ثابت معادله: E=Q-W∆
به صورت زیر در خواهد آمد: E=QV∆ که در آن qv کار انجام شده در حجم ثابت است.
در شیمی فرآیندهایی که در فشار ثابت انجام میگیرند، بسیار متداولتر از فرآیندهایی هستند که در حجم ثابت انجام میشوند. اگر ما توجه خود را بکار فشار - حجم متمرکز کنیم، کار انجام شده در فرآیندهایی که در فشار ثابت به صورت P∆V خواهد بود. پس در فشار ثابت معادله
: E=q-W∆ به صورت زیر در خواهد آمد:
E=qp+P∆V∆
اگر در معادله فوق qp را به دست آوریم خواهیم داشت:
که در آن ، گرمای جذب شده بوسیله سیستم در فشار ثابت است.
تابع ترمودینامیکی آنتالپی
تابع ترمودینامیکی آنتالپی ، H ، با معادله زیر معادله زیر تعریف میشود: H=E+PV
بنابراین qp=∆H
یعنی گرمای جذب شده بوسیله سسیتم در واکنش در فشار ثابت:
اعتبار قانون هس نیز براساس آنتالپی استوار است.
رابطه بین تغییرات در آنتالپی و تغییر در انرژی درونی
وقتی که برای اندازه گیریهای گرماسنجی، از گرماسنج بمبی استفاده میکنیم، اثر گرمایی در حجم ثابت اندازه گیری میشود. واکنشهای معمولی در فشار ثابت انجام میشوند. رابطه میان تغییر در آنتالپی و تغییر در انرژی داخلی برای تبدیل گرماهای واکنش در حجم ثابت qv=∆E به گرماهای واکنش در فشار ثابت qp=∆E مورد استفاده قرار میگیرد. این تغییر با توجه به تغییر حجم محصولات واکنش به عمل میآید و این تغییر در حجم مایعات و جامدات به قدری است که میتوان ان را نادیده گرفت.
اما در واکنشهایی که مواد گازی دخالت دارند، تغییر حجم اهمیت پیدا میکند فرض کنید که VqA حجم کلی واکنش دهندههایی گازی ، VqB حجم کلی محصولات گازی ، nA عمده مولهای واکنش دهندههای گاز ، np عده مولهای محصولات گازی و فشار و دما ثابت است. در این صورت E+(∆n)RT∆=∆
که در آن n∆ عده مولهای محصولات منهای عده مولهای واکنش دهندههای گازی است.
آنتالپی تشکیل
یک روش آسان برای محاسبه H∆ یک واکنش ، استفاده از مقادیر ثبت شدهای است که آتالپیهای تشکیل استاندارد نامیده میشود. آنتالپی تشکیل استاندارد (که با نماد H˚f∆ نشان داده میشود) مقدار H∆ مربوط به واکنشی است که در آن یک مول ماده در 1atm و دمای مرجع خاصی از عناصر سازنده آن در پایدارترین شکلی که در فشار 1atm و دمای مرجع دارند، تشکیل میشود. نماد ˚H∆ که مشخص کننده تغییرات آنتالپی استاندارد است، برای واکنشهایی بکار میآید که فقط شامل موادی در حالت استاندارد هستند.
کلمات کلیدی: ترمو دینامیک