از آن زمان که انسان اندیشیدن را آغاز کرد، همواره کلمات و عباراتى را بر زبان جارى ساخته که مرزهاى روشنى نداشته اند. کلماتى نظیر «خوب»، «بد»، «جوان»، «پیر»، «بلند»، «کوتاه»، «قوى»، «ضعیف»، «گرم»، «سرد»، «خوشحال»، «باهوش»، «زیبا» و قیودى از قبیل «معمولاً»، «غالباً»، «تقریباً» و «به ندرت». روشن است که نمى توان براى این کلمات رمز مشخصى یافت، براى مثال در گزاره «على باهوش است» یا «گل رز زیباست» نمى توان مرز مشخصى براى «باهوش بودن» و «زیبا بودن» در نظر گرفت. اما در بسیارى از علوم نظیر ریاضیات و منطق، فرض بر این است که مرزها و محدوده هاى دقیقاً تعریف شده اى وجود دارد و یک موضوع خاص یا در محدوده آن مرز مى گنجد یا نمى گنجد. مواردى چون همه یا هیچ، فانى یا غیرفانى، زنده یا مرده، مرد یا زن، سفید یا سیاه، صفر یا یک، یا «این» یا «نقیض این» . در این علوم هر گزاره اى یا درست است یا نادرست، پدیده هاى واقعى یا «سفید» هستند یا «سیاه».
این باور به سیاه و سفیدها، صفر و یک ها و این نظام دو ارزشى به گذشته بازمى گردد و حداقل به یونان قدیم و ارسطو مى رسد. البته قبل از ارسطو نوعى ذهنیت فلسفى وجود داشت که به ایمان دودویى با شک و تردید مى نگریست. بودا در هند، پنج قرن قبل از مسیح و تقریباً دو قرن قبل از ارسطو زندگى مى کرد. اولین قدم در سیستم اعتقادى او گریز از جهان سیاه و سفید و برداشتن این حجاب دوارزشى بود. نگریستن به جهان به صورتى که هست. از دید بودا جهان را باید سراسر تناقض دید، جهانى که چیزها و ناچیزها در آن وجود دارد. در آن گل هاى رز هم سرخ هستند و هم غیرسرخ. در منطق بودا هم A داریم هم نقیض A. در منطق ارسطو یا A داریم یا نقیض A منطق (A یا نقیض A) در مقابل منطق (A و نقیض A). منطق این یا آن ارسطو در مقابل منطق تضاد بودا.
منطق ارسطو اساس ریاضیات کلاسیک را تشکیل مى دهد. براساس اصول و مبانى این منطق همه چیز تنها مشمول یک قاعده ثابت مى شود که به موجب آن یا آن چیز درست است یا نادرست. دانشمندان نیز بر همین اساس به تحلیل دنیاى خود مى پرداختند. گرچه آنها همیشه مطمئن نبودند که چه چیزى درست است و چه چیزى نادرست و گرچه درباره درستى یا نادرستى یک پدیده مشخص ممکن بود دچار تردید شوند، ولى در یک مورد هیچ تردیدى نداشتند و آن اینکه هر پدیده اى یا «درست» است یا «نادرست».
هر گزاره، قانون و قاعده اى یا قابل استناد است یا نیست. بیش از دو هزار سال است که قانون ارسطو تعیین مى کند که از نظر فلسفى چه چیز درست است و چه چیز نادرست. این قانون «اندیشیدن» در زبان، آموزش و افکار ما رسوخ کرده است.
منطق ارسطویى دقت را فداى سهولت مى کند. نتایج منطق ارسطویى، «دوارزشى»، «درست یا نادرست»، «سیاه یا سفید» و «صفر یا یک» مى تواند مطالب ریاضى و پردازش رایانه اى را ساده کند. مى توان با رشته اى از صفر و یک ها بسیار ساده تر از کسرها کار کرد. اما حالت دوارزشى نیازمند انطباق ورزى و از بین بردن زواید است. به عنوان مثال هنگامى که مى پرسید: آیا شما از کار خود راضى هستید؟ نمى توان انتظار جواب بله یا خیر داشت، مگر آنکه با تقریب بالایى صحبت کنید. «سورن کیرکگارد» فیلسوف اگزیستانسیالیست، در سال 1843 کتابى در رابطه با تصمیم گیرى و آزاد اندیشى به نام «یا این یا آن» نوشت. او در این کتاب بشر را برده کیهانى انتخاب هاى «دودویى» در تصمیم گیرى هایش نامید. تصمیم گیرى به انجام یا عدم انجام کارى و تصمیم گیرى درباره بودن یا نبودن چیزى.
گرچه مى توان مثال هاى فراوانى را ذکر کرد که کاربرد منطق ارسطویى در مورد آنها صحیح باشد، اما باید توجه داشت که نباید آنچه را که تنها براى موارد خاص مصداق دارد به تمام پدیده ها تعمیم داد. در دنیایى که ما در آن زندگى مى کنیم، اکثر چیزهایى که درست به نظر مى رسند، «نسبتاً» درست هستند و در مورد صحت و سقم پدیده هاى واقعى همواره درجاتى از «عدم قطعیت» صدق مى کند. به عبارت دیگر پدیده هاى واقعى تنها سیاه یا تنها سفید نیستند، بلکه تا اندازه اى «خاکسترى» هستند. پدیده هاى واقعى همواره «فازى»، «مبهم» و «غیردقیق» هستند. تنها ریاضى بود که سیاه و سفید بود. این خود چیزى جز یک سیستم مصنوعى متشکل از قواعد و نشانه ها نبود. علم واقعیت هاى خاکسترى یا فازى را با ابزار سیاه و سفید ریاضى به نمایش مى گذاشت و این چنین بود که به نظر مى رسید واقعیت ها نیز تنها سیاه یا سفید هستند. بدین ترتیب در حالى که در تمامى جهان حتى یک پدیده را نمى توان یافت که صددرصد درست یا صددرصد نادرست باشد، علم با ابزار ریاضى خود همه پدیده هاى جهان را این طور بیان مى کرد. در این جا بود که علم دچار اشتباه شد. در منطق ارسطویى حالت میانه اى وجود ندارد و شیوه استدلال «قطعى و صریح» است. از طرف دیگر ریاضیات فازى بر پایه استدلال تقریبى بنا شده که منطبق با طبیعت و سرشت سیستم هاى انسانى است. در این نوع استدلال، حالت هاى صفر و یک تنها مرزهاى استدلال را بیان مى کنند و در واقع استدلال تقریبى حالت تعمیم یافته استدلال قطعى و صریح ارسطویى است.
منطق فازى، یک جهان بینى جدید است که به رغم ریشه داشتن در فرهنگ مشرق زمین با نیازهاى دنیاى پیچیده امروز بسیار سازگارتر از منطق ارسطویى است. منطق فازى جهان را آن طور که هست به تصویر مى کشد. بدیهى است چون ذهن ما با منطق ارسطویى پرورش یافته، براى درک مفاهیم فازى در ابتدا باید کمى تامل کنیم، ولى وقتى آن را شناختیم، دیگر نمى توانیم به سادگى آن را فراموش کنیم. دنیایى که ما در آن زندگى مى کنیم، دنیاى مبهمات و عدم قطعیت است. مغز انسان عادت کرده است که در چنین محیطى فکر کند و تصمیم بگیرد و این قابلیت مغز که مى تواند با استفاده از داده هاى نادقیق و کیفى به یادگیرى و نتیجه گیرى بپردازد، در مقابل منطق ارسطویى که لازمه آن داده هاى دقیق و کمى است، قابل تامل است.
کلمات کلیدی: فیزیک حالت جامد
صفحات نمایشگر که " مانیتور " نیز نامیده می شوند ، متداولترین دستگاه خروجی در کامپیوترهای شخصی محسوب می گردند. اغلب صفحات نمایشگر از CRT Cathod ray tube استفاده می نمایند . کامپیوترهای Laptops و سایر دستگاههای محاسباتی قابل حمل ، از LCD Liquid Crystal display و یا LED Light-emiting diode استفاده می نمایند. استفاده از مانیتورهای LCD با توجه به مزایای عمده آنان نظیر : مصرف انرژی پایین بتدریج جایگزین مانیتورهای CRT می گردند.
زمانیکه قصد تهیه یک مانیتور را داشته باشیم ، پارامترهای متفاوتی مطرح بوده که می بایست برای هر یک از آنها تصمیم گیری کرد.
· تکنولوژی نمایش ( CRT و یا LCD و یا ... )
· تکنولوژی کابل ( VGA و DVI دو مدل رایج می باشند )
· محدوده قابل مشاهده ( معمولا" قطر صفحه نمایشگر است )
· حداکثر میزان وضوح تصویر (Resolution)
· Dot Pitch
· Refresh rate
· Color depth
· میزان برق مصرفی
در ادامه هر یک از موارد فوق توضیح داده خواهد شد.
تکنولوژی نمایش
از سال 1970 که اولین نمایشگر ها ( مانیتور های مبتنی بر متن ) برای کامپیوتر های شخصی عرضه گردیند، تاکنون مدل های متفاوتی مطرح و عرضه شده است :
- شرکت IBM در سال 1981 مانتیورهای CGA)Color Graphic Adapte) را معرفی کرد. مانتیورهای فوق قادر به نمایش چهار رنگ با وضوح تصویر 320 پیکسل افقی و 200 پیکسل عمودی می باشند.
- شرکت IBM در سال 1984 مانیتورهای EGA)Enhanced Graphiv Adapter) را معرفی کرد. مانیتورهای فوق قادر به نمایش شانزده رنگ و وضوح تصویر 350 * 640 بودند.
- شرکت IBM در سال 1987 سیستم VGA)Video Graphiv Array) را معرفی کرد. مانیتورهای فوق قادر به نمایش 256 رنگ و وضوح تصویر 600 * 800 بودند.
- شرکت IBM در سال 1990 سیستم XGA)Extended Graphics Array) را معرفی کرد. سیستم فوق با وضوح تصویر 600*800 قادر به ارائه 8/ 16 میلیون رنگ و با وضوح تصویر 768 * 1024 قادر به نمایش 65536 رنگ است .
اغلب صفحات نمایشگر که امروزه در سطح جهان عرضه می گردند ، UXGA)Ultra Extended Graphics Array) استاندارد را حمایت می نمایند. UXGA قادر به ارائه 8 / 16 میلیون رنگ با وضوح تصویر 1200 * 1600 پیکسل است .
یک آداپتور UXGA اطلاعات دیجیتالی ارسال شده توسط یک برنامه را اخذ و پس از ذخیره سازی آنها در حافظه ویدئوئی مربوطه ، با استفاده از یک تبدیل کننده " دیجیتال به آنالوگ " آنها را بمنظور نمایش تبدیل به سیگنال های آنالوگ خواهد نمود. پس از ایجاد سیگنال های آنالوگ ، اطلاعات مربوطه از طریق یک کابل VGA برای مانیتور ارسال خواهند شد.
کلمات کلیدی: اپتیک
با تلفیق دو تکنولوژی مغناطیس و نور ، تلاش می شود تا دیسکهایی ایجاد شوند که هم خاصیت قابل پاک شدن و باز نویسی دیسکهای مغناطیسی را داشته باشند و هم چگالی و ظرفیت بسیار بالای دیسکهای نوری. به نظر میرسد که اینگونه دیسکها در تولید انبوه به بازار مصرف عرضه شده است. قطر این دیسکها 5 اینچ بوده ، از نوع پاک شدنی هستند و از سرعت بسیار بالایی برخوردارند ، سرعت انتقال در این دیسکها حدود یک مگابایت در ثانیه و یا بیشتر است. در سالهای اخیر دیسکهای نوری بطور وسیعی برای سرگرمی ، برنامههای تعلیم و تربیت و ارتباطات تصویری – صوتی بکار گرفته شده است. در زمینه ذخیره اطلاعات ، سیستمهای ثبت نوری مستقیم به عنوان تجهیزات یارانهای معروف شدهاند، جایی که ترکیب ظرفیت اطلاعات خیلی زیاد و دسترسی سریع به آنها توسط دیسکهای نوری یک جایگزین جذاب برای روشهای دیگر ذخیره حافظه یارانهای است. ظرفیت اطلاعات زیاد ، طول عمر زیاد و زمان طولانی نگهداری ، کاربردهای ذخیره و ... را منحصر به خود کرده است.
در تمام سیستمهای دیسک نوری ، مانند دیسکهای ضبط صدا (دیسک بسته یا CD) ، دیسکهای نمایشی (که معمولا نمایش لیزری یا LV نامیده میشود) و دیسکهای ذخیره دادهها ، ما فرض میکنیم که اطلاعات بر روی دیسک ثبت میشود یا نوشته میشود و مجددا با استفاده از نور خوانده میشود. در عمل تعداد زیادی از لیزرها مانند لیزر یون - آرگون HeNe ، HeCd و دیود لیزر نیم هادی AlGaAs به عنوان چشمههای نور برای نوشتن و خواندن بکار گرفته شدهاند. در حقیقت روشهای دیگر برای نوشتن و خواندن دیسک وجود دارد که ما به آن نخواهیم پرداخت.
اصلیترین مزیت دیسکهای نوری بر دیگر سیستمها مانند دیسکهای صوتی معمولی و سیستمهای نوار مغناطیسی ، علاوه بر ذخیره اطلاعات به چگالی بالا ، عدم تماس فیزیکی بین سیستم قرائت و ماده ذخیره اطلاعات است که از پاره شدن جلوگیری مینماید. علاوه بر این در دیسکهای نوری ، لایه ماده شفافی را میتوان روی اطلاعات ذخیره شده نشانید تا آسیب نبیند. گرامافون اطلاعاتی را در سطح دیسک به صورت مارپیچ ضبط میکند که رد پا نامیده میشود. اما در عمل در دیسکهای نوری ، نه شیار و نه خط مداوم وجود دارد بلکه فقط "علامتها" مارپیچهای شکستهای را شکل میدهد. این علامتها مساحتهای کوچکی هستند که نسبت به اطراف خود فرق نمایانی دارد. معمولا حفرههایی در سطح دیسک ایجاد میکنند. در نتیجه بازتاب در طول مسیر با توجه به توزیع حفرهها تغییر مییابد، که بیانگر ثبت اطلاعات است.
برای خواندن اطلاعات ذخیره شده بازوی اپتیکی تغییرات بازتاب را به سیگنال الکتریکی تبدیل میکند. یک عدسی در داخل بازو پرتو کم توان لیزر را به لکه کوچک نوری بر روی مسیر متمرکز میکند و همچنین نور بازتاب شده از دیسک را مجددا به آشکار ساز نوری هدایت میکند. خروجی آشکار ساز نوری بر اساس توزیع گودالهای طول مسیر تغییر میکند و سیگنال الکتریکی بدست میدهد که میتوان سیگنال صدا ، تصویر و یا دادهها را دوباره بدست آورد.
سیگنالهای صدا به صورت دیجیتال در دیسک ذخیره میشوند. نمونههای صدا با آهنگ KHz1/44 بدست میآید و بلندی صدا برای هر نمونه به مقادیر عددی به صورت کلمه کد دوتایی ، 16 بیتی در میآید. بیتهای اضافی برای اصلاح خط اضافه میشود و بیتهای فراوانی در فرکانس MHz3218/4 بر روی دیسک ذخیره میشود.
صفرها بیانگر سیگنال نوری کوچک و "یکها" بیانکر سیگنالهای قوی هستند، از این رو مسیر از حفرهها و فضاهایی با طولهای مشخص تشکیل یافته است. از سوی دیگر ، سیگنال های ویدئویی ، بصورت آنالوگ ذخیره سازی میشوند، زیرا ذخیره سازی به روش دیجیتال احتیاح به پهنای باند بسیار بالا دارد. سیگنال ترکیبی ویدئو (با رنگ و اطلاعات تابشی) به صورت فرکانس مدوله میشود (FM) حدود فرکانس حامل MHz5/7 و صدا به آن بعدا با مدولاسیون اضافه میشود. این باعث میشود تا فاصله گودالهای (مرکز تا مرکز) بر اساس مدولاسیون فرکانس صورت مربوطه تغییر یابد. در حافظههای نوری دادهها هم به صورت آنالوگ و هم به صورت دیجیتال ذخیره میشود.
برای مفید واقع شدن در فرآیند کردن دادهها در الکترونیک تجهیزات ذخیره سازی باید قادر به باز سازی دادههای ذخیره شده با حداقل میزان خطا و در حدود 1 قسمت در 1210 باشد، که دیسکهای نوری به این دقت رسیدهاند. با دیسکهای نوری به چگالی اطلاعات زیادی از یک لکه متمرکز شده بسیار کوچک لیزر دست یافتهاند. قطر لکه توسط رابطه (λF(π/4 نشان داده میشود. با توجه به محدودیتهای پراش حداقل قطر لکه نوری تشکیل شده در نقطه کانونی عدسی حدود NA2/λ است که NA دیافراگم عددی عدسی است (NA = n sinθ که n ضریب شکست فضای جسم و θ = φ/s است، φ قطر عدسی و s فاصله جسم تا عدسی است). متقابلا چگالی اطلاعات از مرتبه 2(λ/NA) است.
فرآیند ثبت اطلاعات بستگی به این دارد که آیا قرار است اساسا دیسک به تعداد زیادی برای مشتریان بازار کپی برداری شود و یا برای ذخیره سازی مهیا میشود. بیشتر دیسکها ، به هر منظوری که تهیه شوند، حاوی اطلاعات زیادی با کیفیت خوب هستند. لذا کپی کردن آنها نسبتا آسان و ارزان است.
گودالها دارای ابعاد میکرون است و از این رو مواد ثبت کننده نیز باید دارای توان تفکیک بالا باشند، و برای آنکه بتوان توان لیزری مورد نیاز را به حداقل رسانید باید دارای حساسیت خیلی بالا باشند. ترجیحا مواد ثبت کننده باید بتوانند ثبت زمان واقعی را بدست دهند و اجازه خواندن سریع اطلاعات ذخیره شده را نیز ممکن سازند. یعنی بطور ایدهآل فرآیندهای مرحلهای بین نوشتن و خواندن وجود نداشته باشد. علاوه بر فوتورزیستها ، فیلمهای فلزی ، مخصوصا آنهایی که بر اساس آلیاژ تلوریم ساخته شوند، دارای دقت خوب و حساسیت بالا هستند. در این حالت تابش لیزر پالسی ایجاد گودال یا حفره در لایه نازک فلز میکند، (از طریق ذوب یا برداشتن) و بازتاب لایه نازک را تغییر میدهد. از آنجایی که ایجاد حفره فرآیند حرارتی است، طول موج لیزر خیلی مهم نیست و از هر لیزری که بتواند توان مورد نیاز را بدست دهد برای نوشتن میتوان استفاده نمود.
باریکه لیزر ، معمولا از یک لیزر دیود به دلیل اندازه قابل ملاحظهاش از طریق زیر لایه به لایه بازتاب کننده دیسک متمرکز میشود. عدسی متمرکز کننده شبیه به یک عدسی شی است و برای جاروب کردن کل دیسک ، با لیزر در سیستم قرائت در نردهای زیر دیسک نصب شده است. قسمتی از نور بازتاب شده ، که توسط دیسک مدوله شده است با همان عدسی گردآوری میشود و بر روی آشکار ساز نوری هدایت میشود. نور به شدت از نواحی که گودال وجود ندارد (معمولا زمین خوانده میشود) بازتاب میشود و بطور وسیعی توسط گودالها پراکنده میشود. بطوری که خروجی آشکار ساز وقتی باریکه مسیر را طی میکند، تغییر مییابد. برای مثال ، در ذخیره به روش دیجیتال ، تغییر در میزان سیگنال بازتاب شده بیانگر انتقال از گودال به زمین و یا بالعکس است. در حقیقت این انتقالات بکار میروند تا یکها را بیان کنند، در حالیکه فاصله بین انتقالات گودالها و یا زمین بیانگر تعداد صفرها است.
استفاده از بازتاب به جای نور عبوری چندین مزیت دارد. برای مثال از آنجایی که فقط یک سطح دیسک مورد استفاده قرار میگیرد ساختمان حرکت آزاد سیستم ساده میشود و تعداد قطعات نوری مورد نیاز کاهش مییابد. لایه نشانی محافظ نیز فقط بر روی یک طرفه لایه اطلاعات لازم است و ساختمان کنده کاری کم عمقتر از حالت عبوری است، این دو نکته باعث تولید انبوه دیسک میشود. نهایتا ، سیستم کنترل خیلی سادهتر ساخته میشود و لکه و خراشهای سطح محافظ از لایه اطلاعات جدا میشوند و از تمرکز خارج میشوند و بدین طریق اثر آن بر روی سیگنال باز خوانی حذف میشود.
همچنین سیگنالهای نوری از دیسک مورد نیاز هستند تا ارتفاع عمودی سیستم قرائت را کنترل کنند، یعنی مطمئن شویم که باریکه لیزر به حالت متمرکز شده بر روی لایه اطلاعات باقی میماند و همچنین اطمینان یابیم که باریکه لیزر بطور دقیقی مسیر مارپیچ ثبت اطلاعات را دنبال میکند. کانونی کردن باید با دقت حدود μm 1 بدست آید و ردیابی با دقت حدود μm1/0 باید انجام شود. ارتعاشات ناخواسته و حرکات نامتعارف دیسک بدین معنی است که سیستم کنترل بسیار دقیقتر برای حداقل خطا مورد نیاز است. این سیگنالها برای تمرکز و ردیابی به طرق مختلف بدست آمده است.
برای خیلی از کاربردها مانند حسابگری و به روز کردن اطلاعات تسهیلات پاک کردن و درباره نوشتن مفید است. موادی که میتوانند برای دیسکهای نوری قابل پاک شدن مورد استفاده قرار گیرند شامل مواد مگنتو اپتیک ، ترمو پلاستیکها و لایههای نازک چالکو جناید برای ذخیره دائمی و مواد فوتو کرومیک ، فوتو فریک و فوتو کانداکتیو برای ذخیره سازی برای زمانهای محدود بکار میروند. برای مثال باریکه نویسنده لیزر ناحیه کوچکی از فیلم نازک از ماده فرومغناطیس را که به صورت عمودی مغناطیس شده است (برای مثال Cd TbFe) گرم میکند تا به دمای بالای نقطه کوری آن میرسد، و خاصیت مغناطیس دائمی خود را از دست میدهد.
اگر ناحیه مجاز به سرد شدن در حضور میدان خارجی که در جهت غیر موازی با مغناطیس شدن اولیه است باشد، آنگاه نواحی که پلاریزاسیون را ذخیره کردهاند تشکیل مییابند. خواندن در این حالت معمولا با استفاده از اثر مگنتو - اپتیک کر (که آن باریکه پلاریزه نور که از سطح مغناطیس شده بازتاب میشود دارای صفحه پلاریزاسیون است و به میزانی که بستگی به شدت مغناطیس شدن و جهت مغناطیس شدن دارد نسبت به جهت پرتوی نور، میچرخد)، انجام میگیرد. باریکه پلاریزه شده دارای چرخشهای متناوب است، بسته به اینکه کدام قسمت فیلم برخورد میکند و از آن بازتاب میکند، مقدار چرخش فقط چند دهم درجه است و معمولا با روشهای آشکار سازی حساس ، از عبور نور بازتابی از یک تقسیم کننده پرتو پلاریزه کننده و مقایسه دو نور تولید شده بدست میآید.
پاک کردن و دوباره نوشتن به سادگی از گرم کردن لایه نازک روی دیسک تا دمای بالاتر از نقطه کوری و در حضور یک میدان مغناطیسی خارجی به دقت هدایت شده انجام میشود. بطور وضوح لیزری که برای خواندن بکار میرود باید دارای توان به مراتب کمتر از توان لیزری که برای نوشتن بکار میرود، باشد تا از بین بردن دادههای ذخیره شده جلوگیری شود. اخیرا توجه زیادی به دیسکهای نوری قابل پاک کردن شده است و چندین سیستم چند لایهای ارزیابی شده است. سیستمهای دیسک نوری بطور رو به افزایشی در سیستمهای ذخیره سازی انبوه مورد استفاده قرار میگیرد. برای مثال ، سیستم مگاداک ، شامل 64 دیسک که زمان دسترسی به هر یک از دیسکها حدود ms150 است و زمان ظاهر شدن هر دیسک 20 ثانیه است. ظرفیت چنین سیستمی در ناحیه 1410 - 1210 بیت است که در مدت حدود چند ثانیه میتواند دوباره بدست آید.
کلمات کلیدی: اپتیک
بدون تردید نور خورشید یکی از مهمترین نیازهای زندگی روی کره زمین است. اما دامنه ویژگیهای آن تنها به ایجاد زندگی و حیات در میان جانداران ختم نمیشود. در سال 1665 میلادی ، دانشمند بیست و سه ساله انگلیسی به نام آیزاک نیوتن به مطالعه نور مشغول بود. او در یک روز آفتابی و درخشان ، شیشههای اطاق را به کمک پردههایی ضخیم و بسیار تیره مسدود کرد، به گونهای که اطاق کاملا تاریک شد و از میان شکاف کوچکی در میان یکی از پردهها ، باریکهای از نور به درون اطاق میتابید. او این باریکه نور را از میان یک قطعه شیشه به شکل مثلث ، که منشور نامیده میشود، عبور داد. باریکه نور با گذشتن از میان منشور ، در مسیرش خمیده شد و شکست پیدا کرد.
شکست نور در منشور
نوری که از منشور بیرون آمده بود در راستایی سیر میکرد که اندکی با راستای وارد شدنش به منشور تفاوت داشت و به دیوار مقابل میتابید. جالب آنکه ، هنگامی که نیوتن منشور را از سر راه نور بر میداشت، باریکه تنها لکه گرد سفید رنگی را روی دیوار ایجاد می کرد، در حالی که وقتی منشور در مسیر باریکه نور میرفت، باریکه نور پخش میشد و به صورت رنگین کمان در میآید! در یک سر این رنگین کمان نور سرخ و در انتهای دیگر نور بنفش دیده میشد و در میان آنها رنگهای نارنجی ، زرد ، سبز و آبی قرار داشت. ما اینگونه رنگها را در اطراف خود میبینیم و قادریم آنها را لمس کنیم، در حالی که نیوتن قادر نبود نور را لمس کند، به همین دلیل بود که او نوار نور رنگی را طیف (Spectrum) نامید که در زبان لاتین به معنای روح است!
نیوتن دریافت آن چیزی را که چشمهای ما به عنوان نور سفید میبینند در حقیقت مخلوطی از رنگهای گوناگون است که شکست آنها پس از منشور یکسان نیست و برای نور سرخ از همه رنگهای دیگر کمتر و برای نور بنفش از همه بیشتر است. نیوتن برای اثبات شکستهای متفاوت از دو منشور استفاده کرد و دوباره توانست نور سفید را بدست آورد. اما هنوز یک سوال دیگر باقی بود و آن این بود که چرا نور باید، رنگهای مختلفی را دارا باشد؟!
نیوتن به دنبال جنس نور بود. دو نظریه در این زمینه وجود داشت: اول آنکه نور از مجموعهای از ذرات تشکیل شده است که بر خطی راست و به سرعت در حال حرکتند و دوم آنکه نور مجموعهای از امواج است که بسیار کوچکند و در مسیری مستقیم حرکت میکنند. نکته بسیار قابل توجه در مورد امواج این بود که آنها میتوانند خمیده شوند، این امر زمانی رخ خواهد داد که امواج با موانع برخورد کنند. شما میتوانید خمیده شدن امواج آب را در برخورد با موانع ببینند. همچنین صدایی را که در یک طرف کنج دیوار میشنوید، میتوانید در طرف دیگر آن کنج نیز گوش کنید، پس امواج صدا باید در اطراف آن کنج خمیده شده باشند. از سوی دیگر میدانید که اگر نور به یک طرف کنج بتابد خمیده نمیشود، به عبارت دیگر شما نمیتوانید شخصی را از طرف دیگری از کنج دیوار مشاهده کنید.
به همین دلیل بود که نیوتن تصور میکرد، نور جریانی از ذرات متحرک کوچک است، نه جریانی از امواج. اما همه دانشمندان با او موافق نبودند. یک هلندی به نام کریستین هویگنس نظریه موجی بودن نور را قبول داشت. او عقیده داشت که امواج کوچک بسادگی امواج بزرگ خمیده نمیشوند و اگر نور از امواج بسیار کوچک تشکیل شده باشد، به هیچ وجه خمیده نخواهد شد! او با نیوتن مخالف بود، هر چند که بسیاری عقیده داشتند که نیوتن بزرگترین دانشمند جهان است.
با این حال ، حتی ممکن است بزرگترین دانشمند جهان هم دچار اشتباه شود. شخصی به نام یانگ این مشکل را حل کرد. او در کار طبابت و تنظیم دایرة المعارف بریتانیکا استاد بود و ختی نوشتههای مصریان را برای نخستین بار ترجمه کرد. با این وجود علاقه بسیاری به آزمایشهای مربوط به نور داشت. یانگ صوت را مطالعه کرد و فهمید هنگامی که دو صدا به هم میرسد، از هم میگذرند.
گاهی اوقات یک صدا ، صدای دیگر را کاملا حذف میکند. اما اگر موجهای صدا طولهای متفاوتی داشته باشند، موج بلندتر از موج کوتاهتر جلو میافتد و برای مدتی ، صدا بلندتر از حالت عادی خواهد شد، اما مدتی بعد سکوت برقرار میشود و این امر پی در پی ادامه خواهد داشت. اگر نور جریانی از ذرات باشد، این وضع پیش نمیآید، زیرا یک ذره نمیتواند دیگری را حذف کند. در سال 1801 میلادی ، یانگ با فرستادن یک باریکه نور از دو شکاف باریک متفاوت بسیار نزدیک به هم آزمایشی انجام داد.
آزمایش دو شکاف یانگ
در این آزمایش دو باریکه نور خارج شده از شکافها ، ابتدا اندکی پخش میشدند و هنگامی که به دیوار میرسیدند، بر هم میافتادند. ممکن است تصور کنید که در جایی که دو باریکه نور بر هم میافتند، نور بیشتری وجود خواهد داشت و بنابراین دیوار روشنتر از جاهایی خواهد بود که باریکه بر هم نیفتادهاند، اما به هیچ وجه چنین نیست. در جاهایی که دو باریکه بر هم میافتند، نوارهای روشن و تاریک متناوبی ایجاد میشود.
باریکههای نور در نقاطی همدیگر را حذف میکنند و در نقاطی دیگر بر هم اضافه میشوند و این عمل بصورت متناوب و درست همانند صوتهای موسیقی و تغییرات آنها صورت میگیرد. هنگامی که دو باریکه نور همدیگر را حذف میکنند، می گوییم که باریکه ها با هم تداخل کرده اند، یا اینکه تداخل ایجاد شده است. به این ترتیب نوارهای روشن و تاریک "فریزهای تداخلی" نامیده میشوند. با این آزمایش مسأله حل شد و معلوم گردید که حق با هویگنس است و نیوتن اشتباه میکرده است.
نور از موجهایی بسیار ریز تشکیل شده است. یانگ از روی پهنای فریزهای تداخلی توانست طول یک موج نور را محاسبه کند. این طول را طول موج مینامند. با این محاسبه معلوم شد که طول موج نور حدود 20000/1 سانتیمتر است. البته همه امواج نور دارای طول یکسانی نیستند. نور سرخ بلندترین طول موج را دارد و نور بنفش کوتاهترین طول موج را دارا است. هر قدر طول موج کوتاهتر باشد، نور بیشتر شکسته میشود و به همین دلیل است که منشور رنگها را از هم جدا میکند.
کلمات کلیدی: اپتیک
سالهاست که از عینکهای آفتابی چه بصورت مد و یا جهت تأمین راحتی بیشتر در مقابل نور شدید ، استفاده میشود. چشم پزشکان معتقدند دلیل دیگری نیز برای استفاده از عینکهای آفتابی وجود دارد که آن هم تأمین سلامت طولانی مدت چشمها در موقعیتهای مختلف است. نتایج چندین مطالعه ده ساله اخیر نشان میدهد که ساعتها اقامت در شرایط آفتابی و بدون حفاظ کافی در مقابل چشم شانس بروز بیماریهای چشم را افزایش میدهد. در سال 1988، گروهی از چشم پزشکان مطالعهای را بر روی 838 ماهیگیر خلیج Chesapeake انجام دادند که سالها عمر خود را بر روی آب گذرانده بودند.
ماهیگیرانی که هیچگونه حفاظ چشمی نداشتند در مقابل کسانی که از عینک آفتابی یا کلاه لبهدار استفاده میکردند 3 برابر بیشتر به کاتاراکت (آب مروارید) مبتلاشده بودند. کاتاراکت در واقع کدورت عدسی چشم طبیعی است. بر اساس این مطالعه و مطالعات دیگر ، درحال حاضر چشم پزشکان توصیه میکنند که هرگاه تا حدی در مقابل آفتاب قرار میگیرید که احتمال برنزه شدن پوست و یا سوختگی ناشی از آفتاب نیز بالا میرود، از عینکهای آفتابی جاذب اشعه ماورا بنفش استفاده نمایید، بویژه اگر در ارتفاعات و یا در نزدیکی استوا زندگی میکنید.
انواع مختلف عینکهای آفتابی
کارخانههای سازنده برای حفاظت چشم در مقابل اثرات مضر آفتاب ، طرحهای جدیدی را ارائه کردهاند. این سازندگان قول حفاظت چشم در مقابل اشعه ماورا بنفش یا دیگر انواع تشعشات طبیعی را میدهند، ولی باید توجه داشت که حفاظت در مقابل بعضی از این شعاعها از اهمیت بیشتری برخوردار است.
توصیه میشود همواره عینکی را خریداری کنید که این خاصیت را داشته باشد. حضور طولانی مدت در مقابل اشعه ماورا بنفش ، یا اولترا ویوله (UV) و آفتاب با برخی بیماریهای چشمی ارتباط دارند. چه عدسیهای پلاستیکی و چه عدسیهای شیشهای تا حدی اشعه ماورا بنفش را جذب میکنند، ولی جذب UV توسط این عدسیها را میتوان با اضافه نمودن موادی شیمیایی به ماده اصلی لنز و یا پوشاندن لنز با مادهای مخصوص ارتقاء داد. همواره عینکی را خریداری کنید که 99 تا 100% اشعه UV را جذب کند. بعضی کارخانههای سازنده برچسبهایی را بروی عینک محصول خود نصب میکنند، با این مضمون که جذب UV تا بیش از 400 نانومتر صورت میگیرد که این نیز به معنای همان جذب 100% شعاع UV است.
طول موجهای مادون قرمز بخش غیرقابل رویت نور بوده (طول موج آنها بلندتر از طول موج نور قابل رویت است) و سبب تولید گرما میشوند. بخش مادون قرمز نور خورشید ناچیز بوده و چشم نیز این طول موج را بخوبی تحمل میکند. ادعای بعضی کارخانههای سازنده عینکهای آفتابی در جهت حفاظت چشم در مقابل اشعه مادون قرمز است و حال آنکه تحقیقات موجود رابطه محکمی را بین بیماریهای چشمی و اشعه مادون قرمز نشان ندادهاند.
اینکه نور آبی هم برای چشم مضر باشد هنوز مورد بحث است. عدسیهایی که نور آبی را بلوک میکنند ته رنگی کهربایی داشته و سبب میشوند محیط اطراف برنگ زرد یا نارنجی دیده شود. لنزهای رنگی سبب میشوند که اشیاء دور بویژه در شرایطی مثل برف و یا غبار واضحتر دیده شوند. از این نظر عینکهای کهربایی مزبور بیشتر توسط اسکی بازان ، شکارچیان ، قایقرانان و یا خلبانان استفاده میشود.
عدسیهای پلاریزه خیرگی نور خورشید را که انعکاس یافته از سطوح صافی مثل سنگفرش خیابانها و یا سطح آب باشند از بین میبرند. از این نظر در مواردی مثل رانندگی و یا ماهیگیری میتوانند بسیار مفید باشند. پلاریزاسیون عدسیهای مزبور هیچ تأثیری بر جذب اشعه UV نخواهد داشت، ولی بسیاری از عدسیهای پلاریزه امروزی خاصیت جذب اشعه UV را نیز دارند. برچسب عینک مورد نظر خود را از این نظر بررسی کنید که آیا حداکثر خاصیت جذب UV را دارد یا خیر؟
پوشش آینهای در واقع لایه نازکی از مواد فلزی مختلف است که بروی سطح عدسیهای معمولی پرداخت شده است. گرچه پوشش مزبور مقدار نور ورودی به چشم شما را کاهش میدهد، قابلیت کاملی در حفاظت چشم شما در مقابل اشعه UV نخواهد داشت.
عینکهای کمربندی طوری طراحی شدهاند که مانع ورود نورهای درخشان از کنارههای قاب و رسیدن آنها به چشم میشوند. مطالعات نشان دادهاند که آنقدر شعاع UV از اطراف قاب عینکهای معمولی وارد چشم میشوند که میتوانند اثر سودبخش عدسیهای حفاظت کننده را کاهش دهد. از این نظر عینکهای آفتابی کمربندی که قاب بزرگی دارند و چشم را از تمامی زاویهها حفاظت میکنند مفیدند.
عینکهای سایه روشن (Gradient)
رنگ عدسیهای سایه روشن از بالا به پایین و یا از بالا و پایین تا وسط تغییر میکند و در واقع سایه روشن میشود. عدسیهای سایه روشن تک سایه (تیره در بالا و روشنتر در پایین) میتوانند خیرگی نور آسمان را از بین برده و در عین حال امکان دید مناسبی را از قسمت پایینی فراهم کنند. این عینکها برای ورزش شیرجه هم مناسب هستند، زیرا جلوی دید شما از تخته شیرجه را تاریک نمیکنند. ولی عینکهای مزبور برای شرایط برفی و یا در ساحل دریا مناسب نیستند، خصوصا اگر قسمت پایینی آنها روشن باشد. لنزهای سایه روشن دو سایه (تیره در بالا و پایین و روشن در وسط) ممکن است برای ورزشهایی از قبیل قایقرانی و یا اسکی که شعاعهای نورانی از سطح آب یا برف برمیگردد مناسبتر باشند.
یک عینک فتوکرومیک بطور اتوماتیک در نور درخشان تیره شده و در نور کم روشنتر میشود. در اکثر موارد تیره شدن عینک ظرف نیم دقیقیه صورت میگیرد و حال آنکه روشنتر شدن آن حدود 5 دقیقه طول میکشد. از نظر رنگ نیز بصورت یکنواخت و یا سایه روشن عرضه میشوند. گرچه عینکهای فتوکرومیک ممکن است از نظر جذب UV عینکهای آفتابی خوبی باشند، ولی ممکن است برای انطباق آنها با شرایط مختلف نوری مدت زمانی بطور ناخواسته صرف شود.
عینکهای تراش داده شده و صیقلی
بعضی عینکهای غیر طبی توسط کارخانههای سازندهشان طوری تراش داده و صیقل میشوند که کیفیت نهایی عدسی آنها تا حد مناسبی ارتقا یابد. البته عینکهایی که از تراش و صیقلی بودن مناسبی برخوردار نیستند به چشم شما آسیبی نمیزنند. قبل از هر چیز مطمئن شوید که عدسی عینک مورد نظر شما ساخت مناسبی داشته باشد. جهت قضاوت در مورد کیفیت عینک غیر طبی خود ، به چیزی مستطیل شکل مثل موزاییک کف اتاق خود نگاه کنید. عینک را در فاصله دلخواه نگاه داشته و یک چشم خود را بپوشانید. عینک را به آهستگی و از یک سمت به سمت دیگر و سپس به بالا و پایین حرکت دهید. اگر خطوط در تمام موقعیتها مستقیم بنظر برسند، عدسی مناسبی را انتخاب کردهاید. ولی اگر خطوط در هم میروند، خصوصا اگر این خطوط در میدان مرکزی عدسی اینگونه بنظر میرسند، عینک دیگری را امتحان کنید.
تمام عینکهای آفتابی باید معیارهای تعیین شده از سوی انجمن فدرال غذا و داروی آمریکا (FDA) را تضمین نمایند. (در کشور ما تاکنون هیچگونه کنترلی روی عرضه این قبیل عینکها وجود نداشته و ندارد و استفاده از آنها بیشتر جنبه تزیینی داشته تا محافظتی). هیچ لنزی در واقع نشکستنی نیست، ولی احتمال شکستن عدسیهای پلاستیکی بعد از برخورد یک توپ یا سنگ ، نسبت به عدسیهای شیشهای کمتر است. جنس اکثر عدسیهای عینکهای آفتابی غیر طبی پلاستیک است. پلاستیک پلیکربنات که در بسیاری از عینکهای ورزشی مورد استفاده قرار میگیرد، گرچه سفت است ولی به آسانی نیز خراش برمیدارد. چنانچه قرار است عدسی از این جنس خریداری نمایید حتما عینکی را انتخاب کنید که خاصیت ضد خراش داشته باشد.
یک عدسی متوسط معمولی برای استفادههای معمولی روزمره مناسب است. ولی اگر قرار است از عینک خود در شرایط کاملا نورانی و روشن استفاده کنید لنزی تیرهتر را انتخاب نمایید. رنگ و درجه تیرگی لنز بههیچ وجه معیاری برای میزان توانایی جذب اشعه UV توسط آن عدسی نخواهد بود. بنابراین براساس رنگ عینک نمیتوان از توانایی آن در جذب اشعههای مضر مطمئن شد.
بعضی افراد استعداد بیشتری جهت ابتلا به بیماریهای چشمی ناشی از UV دارند. مبتلایان به بیماریهای بخصوصی (از قبیل دژنراسیون ماکولا یا دیستروفیهای شبکیه) لازم است در شرایط بیرون از خانه همواره از چشم خود محافظت نمایند.
در کشور ما سالانه بیش از هزاران نفر تحت عمل کاتاراکت قرار میگیرند. در جریان این جراحیها ، عدسی طبیعی چشم برداشته شده و بدین ترتیب چشم تا حد بیشتری در معرض خطرات ناشی از UV قرار میگیرد. در جریان و یا بعد از عمل کاتاراکت ، بجای عدسی طبیعی چشم معمولا یک لنز داخل چشمی (Intraocular Lens:IOL) قرار داده میشود. عدسیهای داخل چشمی قدیمی نسبت به عینکهای معمولی یا عینکهای پلاستیکی ، درصد کمتری اشعه UV را جذب میکردند. کارخانههای سازنده IOL در حال حاضر بسیاری از محصولات خود را بصورت جاذب اشعه UV میسازند.
چنانچه کاتاراکت (آب مروارید) چشم شما عمل شده است و لنزهای داخل چشمی شما نیز از نمونه IOL های جدید جاذب اشعه UV نیست، توصیه میشود از عینک آفتابی استفاده نموده و جهت اطمینان بیشتر از کلاه لبهدار استفاده کنید. چنانچه هنگام عمل آب مروارید از عدسیهای داخل چشمی جهت جایگزینی استفاده نشده است احتمال صدمه اشعه ماورا بنفش به چشم شما وجود دارد.
کنتاکت لنز به تنهایی چشم شما را در مقابل اشعه UV محافظت نمیکند، ولی در عین حال کنتاکت لنزهای بسیاری وجود دارد که توانایی محافظت در مقابل UV را دارا هستند. چنانچه کنتاکت لنز شما قابلیت مقابله با اشعه UV را ندارد. باز هم لازم است جهت محافظت از چشمهای خود از عینک آفتابی استفاده کنید.
داروهای حساس کننده به نور (داروهایی که پوست شما را به نور حساستر میکنند) میتوانند چشم شما را نیز به نور حساستر نمایند. لازم است به هنگام مصرف هر یک از داروهای زیر ، با چشم پزشک خود بدقت مشاوره کنید:
پسورالن (Psoralens) (که در درمان پسوریازیس استفاده میشود) ، تتراسیکلین ، داکسی سیکلین ، آلوپورینول و فنوتیازین. زمانی که از این داروها استفاده میکنید هر بار که از خانه بیرون میروید از عینک آفتابی جاذب UV و کلاه لبهدار استفاده نمایید.
حتی بهترین انواع عینکهای معمولی ، قادر به حفاظت از چشم شما در مقابل منابع نوری شدید نیستند. جوشکاری، نورهای شدید برنزه کننده ، شرایط شدید برفی و یا نگاه مستقیم به نور آفتاب (مثلا در جریان خورشید گرفتگی) همگی میتوانند به چشم شما آسیب برسانند. نگاه مستقیم به هریک ازاین منابع نوری بدون حفاظ کافی میتواند سبب ابتلای دردناک قرنیه بنام فتوکراتیت (Photokeratitihis) و یا حتی افت دائمی دید مرکزی شود.
بهترین عینکهای آفتابی آنهایی هستند که 100% شعاع UV را جذب نموده ، بهترین کیفیت اپتیکی را داشته و کمترین احتمال شکسته شدن را داشته باشند.
کلمات کلیدی: اپتیک