سفارش تبلیغ
صبا ویژن
حکمت، شرف بزرگوار را می افزاید وبنده مملوک را تا مجلس ملوک بالا می کشد . [پیامبر خدا صلی الله علیه و آله]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ


Protactinium - Uranium - Neptunium
Nd
U
  
 
 
img/daneshnameh_up/d/d9/U_TableImage.png
جدول کامل
عمومی
نام, علامت اختصاری, شماره Uranium, U, 92
گروه های شیمیایی اکتینید ها
دوره, بلوک 7 , f
جرم حجمی, سختی 19050 kg/m3, ND
رنگ سفید نقره ای فلزی
خواص اتمی
وزن اتمی 238.0289 amu
شعاع اتمیcalc. 175 ND»pm)
شعاع کووالانسی ND pm
شعاع وندر والس 186 pm
ساختار الکترونی Rn]7s25f26d1]
-e بازای هر سطح انرژی 2,8,18,32,21,9,2
درجه اکسیداسیون «اکسید) 5 «باز ضعیف)
ساختار کریستالی اورتورومبیک
خواص فیزیکی
حالت ماده جامد __)
نقطه ذوب 1405( K( 2912 °F
نقطه جوش 2070( K(7473 °F
حجم مولی 12.49 ש»10-6 ««متر مکعب بر مول
گرمای تبخیر 477 kJ/mol
گرمای هم جوشی 15.48 kJ/mol
فشار بخار ND Pa at 2200 K
سرعت صوت 3155 m/s at 293.15 K
متفرقه
الکترونگاتیویته 1.38 «درجه پائولینگ)
ظرفیت گرمایی ویژه 120 J/kg·K
رسانایی الکتریکی 3.8 106/m اهم
رسانایی گرمایی 27.6 W/»m·K)
1st پتانسیل یونیزاسیون 597.6 kJ/mol
2nd پتانسیل یونیزاسیون 1420 kJ/mol
پایدارترین ایزوتوپها
iso NA نیمه عمر DM DE MeV DP
232U {syn.} 68.9 y α & SF 5.414 228Th
233U {syn.} 159,200 y SF & α 4.909 229Th
234U 0.006% 245,500 y SF & α 4.859 230Th
235U 0.72% 7.038 E8 y SF & α 4.679 231Th



اورانیوم یکی از عناصر شیمیایی جدول تناوبی است که نماد آن U وعدد اتمِی آن 92 می باشد. اورانیوم که یک عنصر سنگین، سمی، فلزی، رادیواکتیو و براق به رنگ سفید مایل به نقره ای می باشد به گروه آستیندها تعلق داشته و ایزوتوپ 235 آن برای سوخت راکتورهای هسته ای وسلاحهای هسته ای استفاده میشود. معمولا اورانیوم در مقادیر بسیار ناچیز درسخره ها خاک آب گیاهانو جانوران از جمله انسان یافت می شود.

خصوصیتهای قابل توجه


اورانیوم هنگام عمل پالایش به رنگ سفید مایل به نقره ای فلزی با خاصیت رادیو اکتیوی ضعیف یباشد که کمی از فولادنرم تر است. این فلز چکش خاررسانای جریان الکتریسیته و کمی Paramagnetic میباشد. چگالی اورانیوم 65% بیشتر از چگالی سرب میباشد. اگر اورانیوم به خوبی جدا شود بشدت از آب سرد متاثر شده و در برابر هوا اکسید میشود. اورانیوم استخراج شده از معادن میتواند به صورت شیمیایی به دی اکسید اورانیوم و دیگر گونه های قابل استفاده در صنعت تبدیل شود.

اورانیوم در صنعت سه گونه دارد:

  • آلفا (Orthohombic) که تا دمای 667.7 درجه پایدار است.
  • بتا (Tetragonal) که از دمای 667.7 تا 774.8 درجه پایدار است.
  • گاما (Body-centered cubic) که از دمای 774.8 درجه تا نقطه ذوب پایدار است. ( این رساناترین و چکش خوارترین گونه اورانیوم میباشد.)

دو ایزوتوپ مهم ان U235 و U238 میباشند که u235 مهمترین برای راکتورهای و سلاحهای هسته ای است. چرا که این ایزوتوپ تنها ایزوتوپی است که طبیعت وجود دارد و در هر مقدار ممکن توسط نوترونهای حرارتی شکافته میشود. ایزوتوپ u238 نیز از این جهت مهم است که نوترونها را برای تولید ایزوتوپ رادیو اکتیو جذب کرده و آن را به ایزوتوپ Pu239 پلوتونیوم تجزیه میکند. ایزوتوپ مصنوعی U233 نیز شکافته شده و توسط بمباران نوترونی Thorium232 بوجود میآید.
اورانیوم اولین عنصر یافته شده بود که میتوانست شکافته شود. برای نمونه با بمباران آرام نوترونی ایزوتوپ U235 آن به ایزوتوپ کوتاه عمر U236 تبدیل شده و بلا فاصله به به دو هسته کوچکتر تقسیم میشود که این عمل انرژی آزاد کرده و نوترونهای بیشتری تولید میکند. اگر این نوترونها توسط هسته u235 دیگری جذب شوند عملکرد حلقه هسته ای دوباره اتفاق می افتد و اگر چیزی برای جذب نوترونها وجود نداشته باشد به حالت انفجاری در می آیند. اولین بمب اتمی با این اصل جواب داد «شکاف هسته ای) نام دقیقتر برای این بمبها و بمب های هیدروژنی«آمیزش هسته ای) سلاحهای هسته ای میباشد.

کاربردها:


فلز اورانیوم بسیار سنگین و پرچگالی میباشد.اورانیوم خالی توسط بعضی از ارتشها برای ساخت محافظ برای تانکها و ساخت قسمتهایی از موشکها و ادوات جنگی استفاده میشود. ارتشها همچنین از اورانیوم غنی شده برای سوخت ناوگان خود و زیردریایی ها و همچنین سلاحهای هسته ای استفاده میکند. سوخت استفاده شده در راکتورهای ناوگان ایالات متحده معمولا اورانیوم U235 غنی شده میباشد. اورانیوم موجود در سلاحهای هسته ای بشدت غنی میشوند که این مقدار بصورت تقریبی 90% میباشد.

مهمترین کاربرد اورانیوم در بخش غیر نظامی تامین سوخت دستگاههای تولید نیروی هسته ای است که در آنها سوخت U235 به میزان 2الی3% غنی میشود. اورانیوم تخلیه شده در هلیکوپترها و هواپیماها به عنوان وزن متقابل بر هر بار استفاده میشود.

دیگر کاربردهای این عنصر عبارتند از :

  • لعاب ظروف سفالی از مقدار کمی اورانیوم طبیعی تشکیل شده است (که داخل فرایند غنی سازی نمیشود) که این عنصر برای اضافه کردن رنگ با آن اضافه میشود.
  • نیمه عمر طولانی ایزوتوپ اورانیوم 238 آن را برای تخمین سن سنگهای آتشفشانی مناسب میسازد.
  • U235 در راکتورهای هسته ای Breeder به پلوتونیوم تبدیل میشود. و پلوتونیوم نیز در ساخت بمبهای هیدروژنی مورد استفاده قرار میگیرد.
  • استات اورانیوم در شیمی تحلیلی کاربرد دارد.
  • برخی از لوازم نوردهنده از اورانیوم و برخی در مواد شیمیایی عکاسی مانند نیترات اورانیوم استفاده میکنند.
  • معمولا کودهای فسفاتی حاوی مقدار زیادی اورانیوم طبیعی میباشند. چراکه مواد کانی که آنها از آنجا گرفته شده اند حاوی مقدار زیادی اورانیوم میباشند.
  • فلز اورانیوم برای اهداف اشعه ایکس در ساخت این اشعه با انرژی بالا استفاده میشود.
  • این عنصر در وسایل Interial Guidance و Gyro Compass استفاده میشود.
img/daneshnameh_up/e/e7/atrak.jpg
بارگذاری میله های سوخت اتمی در راکتور

تاریخچه:

استفاده از اورانیوم به شکل اکسیدطبیعی آن به سال 79 میلادی بر می گردد یعنی زمانی که این عنصر برای اضافه کردن رنگ زرد به سفال لعابدار استفاده شد (شیشه زرد با یک در صد اورانیوم در نزدیکی ناپل ایتالیا کشف شده است.)

کشف این عنصر به شیمیدان آلمانی به نام مارتین هنریچ کلاپرس اختصاص داده شد که در سال 1789 اورانیوم را به صورت قسمتی از کانی که آن را pitchblende نامید کشف شد. نام این عنصر را بر اساس سیاره اورانوس که هشت سال قبل از آن کشف شده بود برگزیده شد .این عنصر در سال 1841 به صورت فلز جداگانه توسط eugne melchior peligot استفاده شد.

در سال 1896 Henri Becquerel فیزیکدان فرانسوی برای اولین بار به خاصیت رادیو اکتیویته آن پی برد.
در پروژه Manhattan نامهای Tuballoy و Oralloy برای اورانیوم طبیعی و اورانیوم غنی شده بکار برده شد. این اسامی هنوز نیز برای اورانیوم غنی شده و اورانیوم طبیعی بکار برده میشوند.

در آغاز قرن بیستم تفحص و جستجو برای یافتن معادن رادیو اکتیو در ایالات متحده آغاز شد. منابع رادیوم که حاوی کانی های اورانیوم نیز می بودند برای استفاده آنها در رنگ ساعت های شب نما و دیگر ابزار جستجو شدند. در طی جنگ جهانی دوم اورانیوم از نظر اهداف دفاعی اهمیت پیدا کرد.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/1/24:: 12:36 صبح     |     () نظر

                                                                  پدیده تولید زوج

فرایندی را که طی آن از تابش الکترومغناطیسی ، ماده آفریده می‌‌شود، پدیده تولید زوج می‌‌گویند. به دلیل اینکه باید قوانین بقا برقرار باشند، لذا یک ذره و پادذره آن باید همیشه باهم خلق شوند. پدیده تولید زوج بهترین نمونه برای نمایش قابلیت تبدیل متقابل جرم و انرژی است.


دید کلی

در تعبیر رابطه معروف اینشتین (E = mc2) اصل هم ارزی جرم و انرژی بیان می‌‌شود. به عبارت دیگر ، دو کمیت جرم و انرژی به یکدیگر قابل تبدیل هستند. هرگاه تغییری در جرم حاصل شود، به وسیله تغییر دیگری در انرژی جبران می‌‌شود. برای بررسی امکان تبدیل انرژی به جرم می‌‌توان به پدیده تولید زوج اشاره کرد. به عبارت دیگر ، پدیده تولید زوج می‌‌تواند به این پرسشها پاسخ دهد که
  • آیا می‌‌توان از انرژی خالص ماده آفرید؟
  • یا اینکه آیا می‌‌توان انرژی سکون را به انرژی الکترومغناطیسی تبدیل کرد؟

    البته لازم به ذکر است که در چنین تبدیلاتی باید قوانین بقای انرژی ، اندازه حرکت و بار الکتریکی نقض نشود.

شرایط اولیه تولید زوج

در بین تمام ذرات شناخته شده ، الکترون دارای کوچکترین جرم سکون غیرصفر است و لذا کمترین انرژی برای تولید آن مورد نیاز است. اما می‌‌دانیم که فوتون ذره‌ای بدون بار است، در حالی که الکترون ذره‌ای باردار است. بنابراین برای اینکه قانون بقای بار الکتریکی نقض نشود، علاوه بر الکترون باید ذره باردار دیگری که بار الکتریکی آن به اندازه بار الکتریکی الکترون با علامت مخالف است، ایجاد شود. این ذره را پوزیترون می‌‌گویند که به آن پادذره الکترون نیز گفته می‌‌شود.

الکترون و پوزیترون به جز از نظر علامت بارها ، از هر نظر دیگری به هم شبیه هستند. بنابراین اگر جرم سکون الکترون و پوزیترون را m_0 بگیریم، کمترین مقدار انرژی فوتون آفرینش یک زوج الکترون و پوزیترون ، با لحاظ کردن قانون بقای انرژی برابر 2m0C2 خواهد بود و چون انرژی سکون الکترون یا پوزیترون با لحاظ کردن مقادیر جرم الکترون و سرعت نور برابر 0،51 میلیون الکترون ولت است، لذا کمترین مقدار انرژی فوتون یا به اصطلاح انرژی آستانه برای تولید باید برابر 1،02 میلیون الکترون ولت باشد. بر این اساس زوجهای الکترون فقط به وسیله فوتونهای اشعه گاما یا فوتونهای اشعه ایکس که طول موج خیلی کوتاهی دارند، قابل تولید است.

تولید زوج با انرژیهای بیشتر از انرژی آستانه

اگر انرژی یک فوتون بیشتر از انرژی آستانه برای تولید زوج الکترون و حفره باشد، مازاد انرژی (یعنی تفاضل انرژی فوتون و انرژی آستانه) به صورت انرژی جنبشی زوج آفریده شده ، ظاهر می‌‌شود. این انرژی مجموع انرژی جنبشی الکترون و پوزیترون است.

امکان تولید زوج در فضای تهی

می‌‌توان ثابت کرد که در تولید ذره و پادذره انرژی و اندازه حرکت بطور همزمان نمی‌‌توانند پایسته بمانند، مگر اینکه فوتون در نزدیکی ذره سنگینی ، همچون هسته یک اتم باشند. به بیان دیگر ، پدیده تولید زوج در فضای تهی غیرممکن است. به عنوان مثال ، فرض می‌‌کنیم که در یک فضای تهی ، فوتون ناپدید شده و یک زوج الکترون و حفره آفریده شود.

همچنین فرض کنید که ناظر نسبت به مرکز جرم الکترون و پوزیترون ساکن است. در این صورت اندازه حرکت کل الکترون و پوزیترون نسبت به این ناظر صفر خواهد بود. اما فوتونی که زوج را تولید می‌‌کند، در این چارچوب مرجع دارای اندازه حرکت غیر صفر خواهد بود، چون فوتون در هر چارچوب مرجعی همواره با سرعت C حرکت می‌‌کند. بنابراین باید قبل از برخورد اندازه حرکت فوتون را داشته باشیم، نه اندازه حرکت خالص بعد از برخورد را. بطور خلاصه ، یک فوتون نمی‌‌تواند خودبه‌خود در فضای تهی به یک زوج الکترون _ پوزیترون واپاشیده شود.

آشکارسازی زوج الکترون و پوزیترون

به دلیل اثرهای یونشی که ذرات باردار هنگام حرکت خود در گاز تولید می‌‌کنند، مسیر حرکت آنها قابل روئیت است. حال اگر در این محیط یک میدان مغناطیسی اعمال شود، در این صورت پوزیترون و الکترون به دلیل داشتن بارهای الکتریکی مخالف در قوسهای دایره‌ای با جهتهای مخالف منحرف می‌‌شوند. بنابراین مسیر الکترون و پوزیترون قابل مشاهده خواهد بود.

کشف پوزیترون

وجود پوزیترونها در سال 1307 – 1928 توسط دیراک بطور نظری پیشگویی شد. چهار سال بعد اندرسون (C.D. Anderson) در جریان مطالعاتش روی تابش کیهانی ، پوزیترون را مشاهده و مشخص کرد. کمی ‌بعد از آن بوسیله شتابدهنده‌های ذره که با چند میلیون الکترون ولت کار می‌‌کردند، زوجهای الکترون و پوزیترون در آزمایشگاه تولید شدند. امروزه مشاهده زوجهای الکترون و پوزیترون در برهمکنش فوتونهای با انرژی بالا و ماده یک پدیده عادی به شمار می‌‌روند. در سالهای 1334 – 1955 برای نخستین بار زوجهای پروتون _ پادپروتون و نوترون _ پادنوترون در آزمایشگاه آفریده شدند.

پدیده نابودی زوج

پدیده نابودی زوج فرایندی است که طی آن یک ذره مادی ناپدید شده و به جای آن یک تابش الکترومغناطیسی ایجاد می‌‌شود.

اطلاعات اولیه

یکی از نتایج اصل هم ارزی جرم و انرژی این است که این دو می‌‌توانند به یکدیگر تبدیل شوند. مشاهده تجربی این مسئله در فرایندهای مختلف مانند اثر فوتوالکتریک ، اثر کامپتون ، پدیده تولید زوج و … انجام شده است. در پدیده تولید زوج تابش الکترومغناطیسی در مجاورت یک هسته سنگین به دو ذره الکترون و پوزیترون واپاشیده می‌‌شود، اما پوزیترون نمی‌‌تواند طول عمر زیادی داشته باشد، چون فضا پر از الکترون است، لذا پوزیترون بعد از مدت کوتاهی از تولید شدن با یک الکترون ترکیب شده و از بین می‌‌رود و به جای آن فوتون یا تابش الکترومغناطیسی ایجاد می‌‌شود که به این پدیده نابودی زوج می‌گویند.

شرایط اولیه نابودی زوج

نابودی زوجهای ذره و پادذره و همراه با آن آفرینش فوتونها ، عمل عکس تولید زوج است. نابودی ماده و آفرینش انرژی الکترومغناطیسی را برای حالتی در نظر می‌‌گیریم که الکترون و پوزیترون نزدیک به هم و اساسا ساکن باشند. در آغاز اندازه حرکت خطی کل این دو ذره صفر است، بنابراین وقتی این دو ذره به هم می‌‌پیوندند و نابود می‌‌شوند، یک تک فوتون نمی‌‌تواند آفریده شود، زیرا این عمل باعث نقض قانون بقای اندازه حرکت خطی می‌‌شود، ولی اگر دو فوتون آفریده شوند که با اندازه حرکتهای مساوی و در جهتهای مخالف حرکت کنند، اندازه حرکت خطی می‌‌تواند پایسته بماند.

چنین زوج فوتونهایی دارای فرکانسها و انرژیهای یکسان هستند. در واقع می‌‌توان گفت که سه یا چند فوتون می‌‌توانند آفریده شوند، ولی با احتمال به مراتب کمتر از آفرینش دو فوتون. همین طور ، وقتی چندین زوج الکترون و پوزیترون در نزدیکی یک هسته سنگین نابود می‌‌شوند، تعداد کمی ‌از این نابودیها یک تک فوتون تولید خواهند کرد.

سرنوشت نهایی پوزیترون

سرنوشت نهایی پوزیترونها بعد از تولید در پدیده تولید زوج ، نابودی است. وقتی که یک پوزیترون با انرژی بالا ظاهر می‌‌شود، هنگام عبور از ماده ، در اثر برخوردها ، انرژی جنبشی خود را از دست می‌‌دهد و سرانجام با سرعت پایین حرکت می‌‌کند. آنگاه این پوزیترون با یک الکترون ترکیب می‌‌شود و تشکیل یک دستگاه مقید به نام پوزیترونیوم می‌‌دهد که خیلی سریع (در مدت 10^-10 ثانیه) به دو فوتون با انرژی مساوی واپاشیده می‌‌شود.

از این رو ، مرگ یک پوزیترون با ظهور دو کوانتوم نابودی یا دو فوتون ، که انرژی هریک 0،51 میلیون الکترون ولت است، خبر داده می‌‌شود. قابلیت فنا شدن پوزیترونها به دلیل ناپایداری ذاتی نیست، بلکه به خاطر احتمال زیاد برخورد آنها و نابودیهای بعدی با الکترونهاست.

جهان فرضی

در جهانی که ما در آن زندگی می‌‌کنیم، کثرت تعداد الکترون ، پروتون و نوترون (در حالت کلی ذره) برقرار است، بنابراین زمانی که پادذره‌های این ذرات خلق می‌‌شوند، بلافاصله طی فرایندهایی نابود می‌‌شوند، اما می‌‌توان فرض کرد که بخشی از جهان وجود دارد که در آن تعداد پوزیترون ، پادپروتون ، پادنوترون (در حالت کلی پادذره) زیاد است. هرچند این امر در حال حاضر فقط در حد یک حدس و گمان است.


کلمات کلیدی: کوانتوم، فیزیک نوین


نوشته شده توسط مهدی 85/1/23:: 10:28 صبح     |     () نظر
  • سوخت های فسیلی
  • انواع دیگر انرژی
  • انواع شتاب دهنده
  • در حوزه ذرات


    img/daneshnameh_up/b/b3/Accelrator.png

    امروز سوخت و انرژی در دنیا به چند دسته کلی تقسیم می شوند. سوخت های فسیلی و سوخت های غیرفسیلی و انرژی های تجدید پذیر و غیرقابل تجدید.

سوخت های فسیلی


سوخت های فسیلی عبارتند از: نفت، گاز و زغال سنگ که با اکسیژن هوا ترکیب می شوند و ایجاد انرژی به شکل حرارت می کنند. این سوخت ها در مقایسه با سوخت های دیگر انرژی کمتر تولید می کنند. مثلاً یک کیلوگرم زغال سنگ حدود ۸ کیلووات ساعت انرژی تولید می کند و یک کیلوگرم نفت حدود ۱۲ کیلووات ساعت انرژی تولید می کنند. این سوخت ها آلوده کننده محیط زیست نیز هستند.

به علاوه جزء ذخایر غیرقابل تجدید بوده و دارای مشکلات زیادی در حمل و نقل ایمنی نیز هستند. مانند گازگرفتگی (خفگی) یا تولید گاز سمی منوکسید کربن. دسته دیگر از سوخت ها شامل سوخت های هسته ای هستند مانند اورانیوم یا پلوتونیوم یا ایزوتوپ های هیدروژن مانند دوتریوم یا تریتیوم یا فلز سبک لیتیوم. این سوخت ها در مقایسه با سوخت های دسته اول دارای امتیازات مثبت و منفی هستند. اول اینکه در این سوخت ها بعضی ایزوتوپ ها توانایی تولید انرژی به وسیله تکنولوژی فعلی بشر را دارد مانند ایزوتوپ های کمیاب اورانیوم ۲۳۵ یا پلوتونیوم ۲۳۹ یا اورانیوم ۲۳۳ که به این ایزوتوپ ها شکاف پذیر می گویند. امتیازات اینها عبارتند از تولید مقادیر زیاد انرژی به وسیله حجم کم ماده سوختنی. مثلاً از یک کیلوگرم اورانیوم ۲۳۵ یا پلوتونیوم ۲۳۹ می توان مقدار ۲۳میلیون کیلووات ساعت گرما ایجاد کرد، اما مشکلاتی نیز دارند از آن جمله این که: غنی سازی و تولید این ایزوتوپ ها مشکلات و هزینه زیادی دارند. دوم اینکه، این سوخت های هسته ای سنگین پس از تولید انرژی مقادیر زیادی ایزوتوپ های پرتوزا از خود به جای می گذارند که به زباله های هسته ای موسوم است.

این زباله ها برای محیط زیست و سلامت افراد خطرناک هستند و باید برای صدها سال در انبار های محکم نگهداری شوند تا رادیواکتیو آن از بین برود. دسته دیگر از سوخت های هسته ای شامل عناصر سبک مانند دوتریوم یا تریتیوم یا لیتیوم هستند که قرار است در راکتور های گداخت یا همجوش هسته ای تولید انرژی کنند. البته تاکنون از اینها در بمب های هیدروژنی بهره برداری نظامی و تسلیحاتی می شد، اما برای تولید انرژی برای مصارف صلح آمیز تکنولوژی راکتور های گداخت باید تکمیل شود، این سوخت ها معایب و مزایای فراوانی دارند. اول تولید نوترون و تشعشعات نوترونی می کنند که باید در راکتور های همجوشی هسته ای به نحوی جذب و کنترل شوند دوم اینکه تریتیوم نباید از راکتور نشت کند زیرا یک ایزوتوپ رادیواکتیو است.مزایای این سوخت ها عبارت از این که فراوان در دسترس هستند و دوم اینکه تولید انرژی زیادتری نسبت به اورانیوم یا پلوتونیوم می کنند. مثلاً انرژی حاصل از گداخت هیدروژن به هلیوم مساوی است با ۱۷۷میلیون کیلووات ساعت در صورتی که انرژی حاصل از اورانیوم برابر است با ۰۰۰/۰۰۰/۲۳ کیلووات ساعت. بنابراین یک کیلوگرم هیدروژن حدود ۸ برابر یک کیلوگرم اورانیوم تولید انرژی می کند.

انواع دیگر انرژی

انواع دیگر انرژی عبارتند از: انرژی خورشیدی، انرژی باد، انرژی زمین گرمایی و انرژی بیوگاز که مشکل بزرگ این انرژی تجدیدپذیر اینکه بازده انرژی اینها پایین است و دوم اینکه دائمی نیستند و سوم اینکه تکنولوژی بشر برای استفاده مقیاس زیاد از اینها تکمیل نیافته است. ما در این مقاله سعی می کنیم جدیدترین طرح تولید انرژی که شاید یکی از منابع انرژی قرن ۲۱ باشد را معرفی کنیم. این طرح تولید انرژی عبارت از شتاب دهنده ذرات اتمی برای تولید انرژی زیاد، عملکرد این سیستم و دستگاه براساس استفاده از میدان های الکتریکی و مغناطیسی برای شتاب دادن و کنترل ذرات باردار الکتریکی تا مرز سرعت نور است. این سیستم ها قادر هستند سرعت الکترون ها و پروتون ها را تا مرز سرعت نور شتاب دهند. وقتی ذرات تا این حد شتاب یافتند سطح انرژی آنها چند میلیون برابر می شود و دارای انرژی عظیم و فراوانی می شود. یک مثال نشان دهنده این مطلب است، به عنوان مثال شتاب دهنده پروتون در آزمایشگاه فرمی آمریکا قادر است ذرات پروتون را تا یک تریلیون الکترون ولت (Tev) شتاب دهد.

اگر ما به وسیله این شتاب دهنده پروتون های یک گرم هیدورژن معمولی که در آب زیاد است را تزریق کنیم و شتاب دهیم انرژی پروتون ها برابر خواهد بود با انرژی ۲۶ میلیارد کیلووات ساعت انرژی، که مساوی است با انرژی تولید شده به وسیله شکافت حدود ۱۲۰۰ کیلوگرم اورانیوم یا ۱۵ میلیون بشکه نفت. همه این انرژی عظیم و غیرقابل باور فقط به وسیله شتاب دادن پروتون های یک گرم هیدروژن تا سطح انرژی یک تریلیون الکترون ولت است. پس با این محاسبات دانستیم که شتاب دهنده ها دارای چه قدرت عظیمی هستند.

انواع شتاب دهنده

شتاب دهنده ها به چند دسته کلی تقسیم بندی می شوند:

  1. شتاب دهنده های خطی
  2. شتاب دهنده های مداری
  3. شتاب دهنده سیلکووترون


علاوه بر آن ساخت و نگهداری شتاب دهنده آسان و کم هزینه است. در ضمن می توان این سیستم های مولد را در ابعاد و مقیاس های مختلف ساخت به عنوان مثال یک شتاب دهنده خطی که طول آن ۱۰۰ متر و ولتاژ آن ۱۰ میلیون ولت است که قادر است انرژی معادل یک گیگا (Gev) الکترون ولت تولید کند. این انرژی معادل است با انرژی ۲۶ میلیون کیلووات ساعت در هر ثانیه. اگر تنها موفق شویم ۵۰ درصد انرژی این شتاب دهنده را استفاده کنیم این شتاب دهنده قادر است معادل ۲۰ هزار نیروگاه اتمی در مقیاس نیروگاه اتمی هزار مگاواتی نیروگاه بوشهر تولید انرژی کند. یعنی قادر خواهد بود ۲۰ میلیون مگاوات انرژی الکتریکی تولید کند.

علاوه بر آن از حرارت و گرمای تولیدی این دستگاه می توان برای بخار کردن آب دریا و تولید آب شیرین استفاده کرد. محاسبات نشان می دهد که این سیستم قادر خواهد بود در سال معادل بارندگی سالیانه کشور آب شیرین تولید کند، بدون اینکه هوا را آلوده کند یا مشکلاتی از قبیل زباله های هسته ای یا پس مانده و آلودگی ایجاد کند، در واقع یکی از بهترین منابع انرژی خواهد بود. سوخت مصرفی این دستگاه تنها چند گرم هیدروژن معمولی است انرژی تولیدی از یک دستگاه شتاب دهنده یک گیگا الکترون ولت (Gev) برابر است با انرژی حاصل از سوختن ۰۰۰/۵۰۰/۲ لیتر بنزین خواهد بود. بنابراین اگر به مدت یک سال کار کند معادل انرژی ۵۰۰ میلیارد بشکه نفت انرژی تولید می کند.

ارزش اقتصادی این مقدار انرژی که ۲ برابر انرژی ذخایر نفت عربستان سعودی است با احتساب قیمت هر بشکه نفت بر مبنای ۲۰ دلار برابر است با ۱۰ تریلیون دلار. در صورتی که ما از این سیستم شتاب دهنده استفاده کنیم نیازی به سوزاندن این حجم عظیم نفت و گاز برای تولید انرژی نداریم. مزایای این سیستم عبارتند از:

  1. می توان در ابعاد و اندازه های مختلف ساخت.
  2. هزینه ساخت و نگهداری آن کم بوده است.
  3. هیچ گونه زباله یا آلودگی محیطی تولید نمی کند. محصول نهایی آن آب خالص یا بخار آب است.
  4. با استفاده از این دستگاه عملاً عمر منابع انرژی نامحدود می شود و منبع عظیمی از انرژی در دسترس خواهد بود.

در حوزه ذرات

  1. الکترون ولت: واحد انرژی است و برابر انرژی یک الکترون یا پروتون وقتی از اختلاف پتانسیل یک ولت عبور کند برابر است با ۱۹-۱۰*۶/۱ ژول
  2. یک گرم هیدروژن ۱۰۲۳ * ۰۲/۶ اتم بوده که به آن یک اتم گرم یا یک مول هیدروژن گویند.

اگر این مقدار هیدروژن از شتاب دهنده یک (Gev) عبور کند معادل انرژی آن برابر خواهد بود:

ژول ۱۰۱۳*۶/۹=۱۰۹*۱*۱۰۲۳*۰۲/۶* ۱۹-۱۰*۶/۱

یک کیلووات ساعت برابر است با ۰۰۰/۶۰۰/۳ ژول. بنابراین انرژی آن برابر است با ۲۶ کیلووات ساعت.

۱۰۱۳ *۶/۹ ژول تقسیم بر ۰۰۰/۶۰۰/۳ مساوی ۱۰۵*26

ماشین های شتاب دهنده

دید کلی:


ماشین های شتاب دهنده در انواع مختلف ساخته شده برای نمونه کاربردهایی از شتابدهنده های الکترونی را مطرح می کنیم . اشعه ایکس با نفوذ ، حاصل از این شتاب دهنده ها در معالجات بیماریها بکار برده شده و می شود. با بالا رفتن از انرژی اندرکنش تغییرات ذرات باریکه با هسته ها، موارد مهمی مطرح می شود و الکترونها در تمامی جهات پراکنده می شود.

پدیده های مورد بررسی ماشین های شتاب دهنده :


  • توزیع زاویه ای ذرات توسط آشکارسازها مورد مطالعه قرار می گیرد.

  • در انرژیهای بالای 200MeV این امر روش قدرتمندی برای دریافت اطلاعات در مورد شعاعهای هسته ای و توزیع پروتونها در داخل هسته است.


  • حتی در انرژیهای بالاتر حدود 600MeV نه تنها این الکترونهای شتاب یافته می توانند ساختار هسته را مشخص نمایند بلکه ساختار پروتونها و الکترونهای منفرد و مجزا را نیز می توانند کشف نمایند.


  • به عنوان مثال به وسیله همین مطالعات یعنی ارسال کاوه های الکترونی (پوپ) به اطراف یک نوترون معلوم شده است :
    که نوترون بدون بار نیست بلکه دارای یک توزیع بار مثبت منفی است که میانگین آنها صفر است و حتی در مورد آن با محاسبات فرم فاکتور گشتاور مغناطیسی نیز پیدا شده است.


نقش ماشین شتاب دهنده در مطالعات علمی:


  • هنگامی که ستون تابش شتابدار متشکل از ذرات سوای الکترونها پروتونها ، نوترونها و غیره) باشند وضعیت به طور اساسی فرق خواهد کرد. می دانیم که اینها هسته های اتمی اند و در نتیجه دارای بار مثبت می باشند به ترتیبی که توسط هسته های هدف طبق برهم کنش الکترومغناطیسی دفاع می شوند. ذره با عبور از هدف در اثر برخورد با الکترونهای اتمی به تدریج انرژی خود را از دست می دهد.


  • دومین اختلاف بسیار اساسی این نوع باریکه ها ناشی از این حقیقت است که نیروهای بین هستک ها فقط الکترومغناطیسی نیستند. همان طور که می دانید این نتیجه گیری از ذرات وجودی هسته های اتمی ناشی می شود. در واقع اگر تنها نیروهای الکتریکی حاضر بودند، پروتونها همدیگر را دفع می کردند و هسته پایدار بجز هسته استثنایی هیدروژن نمی توانست وجود داشته باشد.


ارمغان ماشین های شتاب دهنده:


  • نوع دیگری از نیروها که عموما نیروهای هسته ای نامیده می شوند وجود دارد که می بایست عهده دار نگهداری هسته در کنار همدیگر باشند.
  • هنگامی که هسته های اتمی به عنوان پرتابه بکار روند، همین نیروهای هسته ای بر پراکندگی آنها اثر خواهند گذاشت در نتیجه اطلاعاتی درباره طبیعت آنها حاصل خواهد شد.


  • طبیعت بنیادی نیروهای هسته ای دقیقا بیان نشده است. لیکن چندین واقعیت حتمی به هر صورت اساس قرار گرفته اند و به طور مثال شما می دانید که برد آنها بسیار کوتاه بودند ( از مرتبه 13-10 سانتی متر).


  • قدرت نیروهای هسته ای واقعا زیاد است. زیرا نیروی دافعه الکتروستاتیکی دو پروتون در چنین فاصله ای حدود 23 "کیلوگرم نیرو" است (به اندازه 1028 برابر وزن خودشان است). به سبب همین نیروها ، ماده هسته ای طوری فشرده شده است که چگالی d=3.5x108gr/cm است.


  • دو نوع نیرو داریم که بین دو هسته فرودی و هدف موثر است. نیروی الکتروستاتیکی که در فواصل طولانی موثر است و نیروهای هسته ای حاکم در فواصلی که دو ذره فوق العاده برهم نزدیک باشند.


توان ماشین های شتاب دهنده:


روشن است که نیروهای هسته ای بیشتر روی ذرات فرودی که به قدر کافی انرژی دارند که بتوانند بر سد الکتروستاتیکی حاصل از هدف غلبه کند، کنش نشان میدهد. از بین ماشین های شتابدهنده ذرات ، مولد الکترواستاتیک تک مرحله ای واندوگراف برای مثال با ماکزیمم انرژی 8MeV نمیتواند برای تولید اندرکنشها در هسته های هدف با عدد اتمی بیشتر از 28=Z بکار رود، حال آنکه یک سیکلوترون با 20MeV انرژی عملا دارای چنین محدویتی نیست. پس هر ماشین دارای گستره توانایی معین است.


کلمات کلیدی: کوانتوم، هسته ای


نوشته شده توسط مهدی 85/1/21:: 4:17 عصر     |     () نظر

تاریخچه

در سال 1895 ، درخشش کوتاه صفحه فسفرسانتی که در گوشه‌ای از آزمایشگاه نیمه تاریک بررسی اشعه کاتدیک قرار داشت، ذهن آماده و خلاق رنتگن که در آن زمان استاد فیزیک بود، متوجه پرتوهای تازه‌ای نمود که از حباب شیشه‌ای لامپهای کاتودیک بیرون زده و بی آنکه به چشم دیده شود به اطراف پراکنده می‌شوند. آن چه مایه شگفتی رنتگسن شده بود، نفوذ این پرتوها از دیواره شیشه‌ای لامپ به بیرون و تأثیر آن روی صفحه فاوئورسانت در گوشه‌ای نسبتا دور از لامپ در آزمایشگاه بود. رنتگن به بررسیهای خود درباره کشف تازه که آن پرتو ایکس نامید (بخاطر فروتنی) ، ادامه داد. بعدها این اشعه رنتگن نامیده شد.



img/daneshnameh_up/1/17/PH_AS_X.jpg




طیف اشعه ایکس

اشعه تولید شده بوسیله لامپ اشعه ایکس یک طول موج ندارد. بلکه شامل گستره‌ای از طول موجهاست. پرتوهای ایکس بوسیله دو نوع فرایند تولید می‌شوند:


  • شتاب منفی الکترونها در موقع برخورد با انتهای ماده هدف پرتوهای ایکسی با طول موجهای متفاوت تولید می‌کند. این پرتو "سفید" یا نوار پیوسته فرکانسها در طیف اشعه ایکس را به عنوان تابش ترمزی می‌شناسند.

  • برخورد الکترون با اتم هدف موجب جابجایی الکترون مداری در اتم هدف و راندن آن به حالت پر انرژی‌تری می‌شود. این عمل را برانگیزش می‌نامند.

    • هنگامی که الکترون مداری پر انرژی به موقعیت مداری نخستین خود برمی‌گردد، رها شدن انرژی بصورت گسیل پرتوی با فرکانس خاصی خواهد بود. این پرتو شدت خیلی بیشتری نسبت به پرتو "سفید" زمینه خواهد داشت.

    • معمولا برای هر ماده هدف معینی بیش از یک طول موج اشعه ایکس وجود دارد. طول موج پرتو تولید شده بوسیله لامپ اشعه ایکس ، حد پایینی دارد که با ولتاژ لامپ نسبت عکس دارد. کمترین طول موج برحسب نانومتر (nm) از رابطه زیر بدست می‌آید. که در آن V ولتاژ لامپ می‌باشد.

λmin = 1239.5/V


 

    • پرتو حد پایینی طول موج طیف ، بیشترین اهمیت را در پرتو نگاری دارد. زیرا توانایی نفوذ آن بیشتر است.

مشخصه‌های بارز اشعه ایکس

  • بزرگی جریان لامپ بر پخش طول موج اشعه ایکس تولید شده تأثیر ندارد. اما بر روی شدت پرتو موثر است.

  • طول موج اشعه ایکس یا اشعه گاما بسیار مهم است. با کاهش طول موج ، نفوذپذیری پرتو به درون محیط افزایش می‌یابد. به بیان دیگر در مقایسه با پرتوی با طول موج بزرگتر ، پرتوی با طول موج بسیار کوتاه قادر به نفوذ به ماده معینی با ضخامت بیشتر و یا چگالی بیشتر خواهد بود. بنابراین ، اگر حداقل طول موج پرتو تولید شده با افزایش ولتاژ لامپ کاهش یابد، نفوذپذیری پرتو افزایش خواهد یافت.

    تصویر




     

بررسی کمی اشعه ایکس

  • پرتو ناشی از لامپ 200 کیلوولتی به درون فولادی به ضخامت حدود 25mm نفوذ می‌کند.

  • اگر ولتاژ لامپ به 1Mv افزایش یابد، پرتو به درون فولادی به ضخامت حدود 130mm نفوذ خواهد کرد.

  • حد بالای عملی برای لامپهای اشعه ایکس رایج در حدود 1000Kv است و این امر سبب تولید اشعه ایکس با کوتاهترین طول موج می شود. این پرتو انرژی فوتونی تقریبا برابر 1Mev دارد.

  • پرتو ایکس با انرژی فوتونی تا 30Mev را با استفاده از الکترونهای پرانرژی (الکترونهای سریع) بوجود آمده بوسیله مولد واندوگراف شتاب دهنده خطی یا چشمه بتاترون می‌توان تولید کرد.

نفوذ پذیری اشعه ایکس

نفوذ پذیری پرتوهای ایکس تولید شده از پرتوهای گاما کمتر بوده اما برای پرتوهای ایکس تولید شده در لامپهای اشعه ایکس بوسیله چشمه‌های پرانرژی در خصوص فولاد نیز دیده می‌شود. باید توجه کرد که بیشترین ضخامتهای استفاده از زمانهای پرتودهی چند دقیقه‌ای و فیلمی با سرعت متوسط می‌توان مورد بررسی قرار داد. مقاطع ضعیفتر را با استفاده از زمانهای پرتودهی طولانی و فیلمی با سرعت زیاد می‌توان بازرسی کرد.

تصویر

نحوه تولید اشعه ایکس


پرتوهای ایکس را بوسیله بمباران هدفی فلزی با باریکه‌ای از الکترونهای سریع تولید می کنند. قطعات اصلی لامپ اشعه ایکس شامل کاتد برای گسیل الکترونها و آند به عنوان هدف می‌باشد، که هر دو درون لامپ خلا جای گرفته‌اند. با توجه به میزان نفوذ اشعه ایکس و فرکانس مربوطه‌اش از لامپهای اشعه ایکس متنوعی در کارهای تحقیقاتی ، پزشکی ، صنعت و ... استفاده می‌کنند.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/1/21:: 3:47 عصر     |     () نظر

 

طیف الکترومغناطیسی (بیناب الکترو مغناطیس)

تابش الکترو مغناطیس در زندگی:

img/daneshnameh_up/9/9e/1116.gif




در مبحث اپتیک بیشتر بررسی ها در ناحیه نور مرئی است در صورتیکه نور در داخل طیف الکترو مغناطیسی جا گرفته و خواص و محاسبات آن تمام گسترده طول موجی را شامل می شود امّا در الکترومغناطیس شاید تا به حال پرتو های ایکس (X) ، پرتوهای گاما (γ) ، پرتو های کیهانی ، موج رادیویی ، امواج تلویزیونی ، امواج ماکرو ویو و...به گوشتان خورده است. در چنین حالتی می خواهید بدانیدکه ....

  • اشعه ایکس چی هست؟
  • مکانیزم عمل عکس برداری ها و رادیو لوژی چیست؟
  • با تابش ایکس و گاما و ...چگونه عکس می گیرند؟
  • چرا فقط عکس استخوانها می افتد؟
  • اموج رادیویی چیست و سرعت آن چقدر است؟
  • فرستنده و گیرنده رادیویی چگونه کار می کنند و یا ساخته می شوند؟
  • انتقال نور و تصویر در امواج تلویزیونی مشاهده و دریافت تصویر از آن چگونه صورت می گیرد؟
  • ماهواره ها چگونه کار می کنند؟
  • برای چه پشت بام آنتن گذاشته ایم ؟ و هزاران پدیده دیگر.......

کاربرد و بررسی طول موج های مختلف طیف الکترومغناطیسی:


در حالت کلی بایستی چگونگی بازتاب ها و شکست ها از مرز های مختلف هادی ها و عایق ها و مواد قطبی و مواد غیر قطبی و....و چگونگی عبور تابش از آزمایش‌های مربوط به هوا و روش های تمرکز پرتو ها ، روش های انتشار و چگونگی انتشار و ماهیت امواج الکترو مغناطیسی و چگونه تولید می شوند و قوانین حاکم بر آن را بدانیم.

امّا باید بدانیم در تمام ناحیه الکترو مغناطیسی تمامی دستگاه ها نمی توانند، کارایی خوبی داشته باشند. و اکثر سیستم های کاربردی محدود به ناحیه خاصی از این گسترده طول موجی می باشند. مثلا سیستم رادیو فقط ناحیه موج رادیویی را پوشش می دهد .

دوربین های مادون قرمز برای این ناحیه ساخته شده اند و برخی ناسازگاری هایی از قبیل اینکه ناحیه پرتو ایکس هیج ماده ای با توان شکست ثابت برای ساختن عدسی وجود ندارد زیرا اشعه ایکس از شیشه نمی تواند عبور کند بر خلاف نور مرئی که راحت عبور می کند لذا برای هر نوع تمرکز و تصویر در گستره اشعه ایکس از آینه استفاده می کنند.

نحوه تولید امواج الکترو مغناطیسی:


جسم سیاه که با نظریه مکانیک کوانتومی توضیح داده می شود تمام ناحیه طول موجی بیناب الکترو مغناطیسی راتولید می کند«نشر) و بر عکس کلیه طول موج هایش را جذب می کند اکثر لامپ ها ی تخلیه الکتریکی ناحیه خاصی را ایجاد می کند.

مواد رادیواکتیو با تشعشع هسته ای پرتوهای ایکس و پرتوهای گاما را شامل هستند.تحریکات اتمی بیشتر ناحیه مرئی را شامل می شوند. تحریکات داخلی اتمی به پرتو های ایکس منجر می شوند رشته های تنگستن برای نورهای مرئی مناسبند.


در تخلیه های الکتریکی دریک گاز، نظیر لوله منور لامپ های نئونی ، یک سری از طول موج های گسسته گسیل (نشر) می کندوقتی نور حاصل از لامپ هیدروژن را به یک منشور منتقل نماییم خطوط طیفی اتم هیدروژن به طول موج های اصلی خود تجزیه می گردد و با رنگ های مختلف نمایان می گردد. اصطلاح خط طیفی به خاطر پایداری طول موج های خاص تولید آن طول موج های اصلی در هر گستره طول موجی به نور های آن سیستم استفاده شده است.


لامپ سدیم:چراغ های خیابان نیز از آن است طیف زرد رنگی دارد که گسیل اصلی آْن در دو طول موج 589 و 590 نانو متر صورت می گیرد طیف اتم هیدروژن نه تنها از تحریک اتمی آن مشاهده شده که خطوط طیفی گسسته ای دارد و برخی رنگ ها از قبیل (نیلی و سبز و زرد و آبی و ....) را شامل می شود بوسیله طیف خورشید نیز دیده می شود.


این خطوط توسط دانشمندان خورشید شناسی از جمله جوزف فرانهوفر(Joseph Von Fraungofer) با حروف الفبا علامت گذاری شده اند،مثلا خط D سدیم و....
با اختراع ««لیزر ))(Laser)، اکنون وجود دارند که می توان خروجی های قوی در یک طول موج منفرد تولید کنند.ما در طبیعت طیف گسسته، منفرد نداریم مثلا برای نور زرد یک گستره طول موجی حدودآ 0.6 نانومتر داریم.

چشمه های طبیعی:

  • خورشید و ستارگان که ناحیه مرئی را پوشش می دهند.
  • مواد رادیواکتیو طبیعی ( گسیلنده پرتوهای ایکس و گاما) مانند کبالت (Co- 60)و اورانیوم(U-137) و ... که ناحیه ایکس و گاما را شامل می شوند.
  • پرتو های کیهانی که از فضای یونسفر خارج ازجو زمین می آیند.
  • پرتو های مادون قرمز و فرو سرخ و ماورای بنفش که از خورشید و ستارگان ایجاد می کردند.
  • برخی مولکولهای ویژه دو ساختاری یا چند ساختاری که ناحیه های لیزری و میزری را دارند، مانند آمونیاک، یاقوت و ....

چشمه های مصنوعی:

  • انواع لامپ ها که مکانیزم های قوس های الکتریکی و تخلیه های الکتریکی و ... را دارند مانند لامپ فلاش ،لامپ سدیم و ...
  • کاواک های جسم سیاه : شاید تا به حال دیده باشید که وقتی آهن را گرم می کنیم ازخود نور تابش می کند.
  • لیزر ها که از موادفعالی مانند یاقوت (نئودنیوم یق ND:YAG) و... که در طیف های گسترده یا طول موج های منفردبصورت پالسی یا گسترده ساخته می شوند.
  • میزرها(Masers) که ناحیه طول موجی ماکروویو را می پوشانند. مانند میزرهای آمونیاک و...

اشعه مادون قرمز یا فرو سرخ ، انرژی الکترومغناطیسی است که برای چشم انسان نامرئی است و در طیف الکترومغناطیسی ، بین امواج رادیویی و نور مرئی قرار دارد و با سطوح انرژی اتمی ارتباط دارد. این اشعه که در نور خورشید و منابع مصنوعی وجود دارد، اگر توسط ماده جذب شود، آن را گرم می‌کند.


گسترده اشعه مادون قرمز

منطقه اشعه مادون قرمز بین طول موجهای 0.8 میکرومتر (که حد نور مرئی است) و 343 میکرومتر قرار دارد.
در اشعه مادون قرمز طول موجهای کوتاهتر از 1.5 میکرومتر از پوست می‌گذرند و بقیه جذب شده و تولید حرارت می‌کنند. اشعه مادون قرمز را به دو قسمت تقسیم می‌کنند:


  • طول موجهای بین 0.8 میکرومتر تا 4 میکرومتر.

  • طول موجهای بلندتر از 4 میکرومتر که اغلب بوسیله مواد جذب می‌شوند، بخصوص طول موجهای بلندتر از 10 میکرومتر بوسیله هوا کاملا جذب می‌شوند.

جذب اشعه مادون قرمز

  • آب یکی از مواد خیلی جاذب اشعه مادون قرمز است. محلول نمک طعام در حدود 20 برابر آب خالص اشعه را جذب می‌کند.

  • شیشه معمولی برای اشعه مادون قرمز بلند به کلی غیر قابل نفوذ است و مورد استفاده آن در ساختن گلخانه‌ها برای حفظ گلها از سرما به سبب همین خاصیت است.

منابع اشعه مادون قرمز

منبع طبیعی

بزرگترین منبع طبیعی اشعه مادون قرمز ، خورشید است. مقداری از نور آفتاب که به ما می‌رسد، دارای اشعه مادون قرمز کوتاه است، زیرا پرتوهای مادون قرمز بلند آن در طبقات هوا جذب شده‌اند.

منبع مصنوعی

  • اجسام ملتهب

    بهترین منبع مصنوعی برای اشعه مادون قرمز ، اجسام ملتهب می‌باشند که طول موج آنها بر حسب درجه حرارت تغییر می‌کند. اگر بخواهیم اشعه مادون قرمز تنها داشته باشیم، باید نور این قبیل منابع مصنوعی را بوسیله شیشه‌هایی که در ترکیب آنها ید و یا اکسید منگنز دو (MnO) وجود دارد، صاف کنیم. این نوع صافیها طیف مرئی را جذب می‌کند و فقط اشعه مادون قرمز کوتاه را عبور می‌دهند.

  • عبور حریان الکتریکی از مقاومتها

    روش دیگر که سهل و عملی است، عبور جریان الکتریکی از مقاوتهای فلزی است، بطوری که این مقاوتها سرخ می‌شوند. این مقاومتها غالبا از آلیاژهای آهن و نیکل ساخته شده‌اند.

  • چراغ با مفتول زغال چراغهایی که مفتول آنها از زغال چوب ساخته شده است، نیز به نسبت زیاد اشعه مادون قرمز دارند. در این چراغ نسبت اشعه کوتاه بین 1 میکرومتر و 7 میکرومتر خیلی کم ، ولی نسبت اشعه مادون قرمز بلند آن زیاد است.

  • چراغ بخار جیوه چراغ بخار جیوه نیز ، اشعه مادون قرمز با طول موج کوتاه بین 0.92 میکرومتر و 1.3 میکرومتر تولید می‌کند، ولی نسبت اشعه حاصله نسبت به سایر منابع کمتر است.

اندازه گیری اشعه مادون قرمز

برای اندازه گیری اشعه مادون قرمز از جذب انرژی حرارتی آن استفاده می‌نمایند، یعنی این اشعه را به جسمی می‌تابانند که بتواند کلیه انرژی را جذب کند و سپس مقدار حرارتی را که در جسم مزبور تولید گشته ، اندازه می‌گیرند.


  • پیل ترموالکتریکی : وسیله دقیق دیگر برای اندازه گیری اشعه مادون قرمز ، استفاده از پیل ترموالکتریک می‌باشد که در آن انرژی حرارتی تبدیل به انرژی الکتریکی می‌شود و به سهولت قابل اندازه گیری است.

  • سوزن ترموالکتریک : برای اندازه گیری درجه حرارت در داخل نسوج زنده از دستگاهی به نام سوزن ترموالکتریک استفاده می‌کنند.

خواص فیزیولوژیکی اشعه مادون قرمز

  • اشعه مادون قرمز سبب گرم شدن پوست و نسج سلولی زیر جلدی می‌شود.
  • اشعه مادون قرمز ممکن است در پوست سوختگی‌های نسبتا شدیدی ایجاد نماید.
  • اگر اشعه مادون قرمز را به مقدار مناسب بکار برند، در نتیجه اتساع رگهای زیر پوست ، سبب تسهیل اعمال فیزیولوژیک پوست می‌شود و حتی از راه عکس‌العمل پوستی در بهبودی حال عمومی ‌نیز می‌تواند موثر واقع شود.
  • این اشعه خاصیت تسکین درد را نیز دارد که علت آن همان اتساع عروق و بهتر انجام گرفتن عمل رفع سموم و تغذیه بافتها است.

کاربرد اشعه مادون قرمز

  • ترموگرافی
  • طیف سنجی
  • بالا بردن متابولیسم

دستگاه تولید اشعه مادون قرمز

دید کلی

اشعه مادون قرمز بخشی از طیف الکترومغناطیسی است که با سطوح انرژی اتمی ارتباط دارد. بطوری که وقتی این اشعه توسط ماده جذب شود، تولید آثار حرارتی می‌کند. محدوده طول موجهای مادون قرمز 0.78 تا 1000 میکرو متر است.

دستگاه غیر نورانی

نوع اول

نوع ساده آنها برای تولید امواج مادون قرمز شامل سیم پیچی است که به دور مواد عایقی نظیر خاک نسوز یا موادی از جنس چینی پیچیده شده است. این المانها شبیه همان المانهایی هستند که در اجاقهای الکتریکی وجود دارد. طرز کار این المانها به این شکل است که یک جریان الکتریکی از درون سیم عبور می‌کند و بر طبق قانون ژول تولید حرارت می‌نمایند. امواج مادون قرمز هم توسط سیم داغ و هم واسطه‌ای (خاک نسوز یا چینی) که به طریقه هدایت گرم شده است، انتشار می‌یابد. ممکن است در این المانها علاوه بر تولید امواج فرو سرخ ، اندکی امواج مرئی نیز تولید شوند و یا این که به واسطه داغ شدن سیمها المان اندکی قرمز رنگ بشود. این مساله نشان می‌دهد که این المانها کاملا غیر نورانی نیستند.

نوع دوم

ممکن است سیم پیچهایی را درون موادی از جنس خاک نسوز یا در پشت صفحاتی از همین جنس که با رنگ سیاه رنگین شده قرار داد. بدین طریق کلیه امواج فرو سرخ از خاک نسوز گرم شده ساطح می‌گردد و به واسطه سیاه رنگ بودن آن میزان انتشار امواج مرئی نیز به حداقل می‌رسد.

نوع سوم

نوع سوم از ژنراتورهای نورانی وجود دارد که شامل یک لوله استیلی به قطر تقریبا 8 میلیمتر است که درون یک سیم مارپیچی قرار داده شده است. این سیم به دور یک سری مواد عایق الکتریکی که هدایت کننده خوبی برای گرما می‌باشند، پیچیده شده است. جریان الکتریکی از درون این سیم مارپیچی می‌گذرد و تولید حرارت می‌کند. این حرارت به واسطه ماده عایق الکتریکی به لوله استیلی می‌رسد و آن را گرم می‌کند. با گرم شدن این لوله استیل صدور امواج فروسرخ نیز آغاز می‌شود. این لوله استیلی دارای 2 یا 3 پیچ و خم خوردگی بزرگی می‌باشد و به طریقه مناسبی در درون یک منعکس کننده ، کار گذاشته شده است.

زمان لازم برای تولید اشعه مادون قرمز

همه المانهای نورانی از لحظه روشن شدن تا زمانی که تولید و تابش امواج فرو سرخ به حداکثر شدت برسند، محتاج صرف مدت زمان می‌باشد. المانهای نوع اول که امواج را مستقیما از سیم گرم شده صادر می‌نمودند، برای رسیدن به حداکثر شدت صدور امواج به 5 دقیقه صرف وقت از لحظه روشن نمودن دستگاه احتیاج دارند. این زمان برای دستگاههای دیگر طولانی تر می‌باشد و بسته به ساختمان دستگاه به 10 و یا حتی 15 د قیقه نیز خواهد رسید.

دستگاه نورانی

امواج صادره از ژنراتورهای نورانی بوسیله یک یا دو لامپ نئون تولید می‌گردند. هر لامپ نئون از یک فیلامان که در درون یک حباب شیشه‌ای قرار داده شده است، ساخته می‌شود. ممکن است در درون این لامپها ایجاد خلا بنمایند و یا ممکن است آنها را با گاز بی اثر در فشار اندک پر نمایند. فیلامانها سیم پیچی با رشته‌های بسیار نازک می‌باشند که از فلز تنگستن ساخته می‌شوند. فیلامان را در مجاورت هوا قرار نمی‌دهند. زیرا آن را اکسید می‌کند. در صورت وجود این اکسیداسیون ، موادی در دیواره این حباب رسوب می‌کند که پوشاننده اشعه هستند. عبور جریان الکتریکی از درون فیلامان سبب تولید امواج فرو سرخ ، نور مرئی و مقداری نیز امواج فرابنفش می‌گردد.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/1/20:: 6:29 عصر     |     () نظر
<   <<   11   12   13   14   15   >>   >