سفارش تبلیغ
صبا ویژن
دنیا خانه‏اى است که از آن بگذرند ، نه جایى که در آن به سر برند ، و مردم در آن دو گونه‏اند : یکى آن که خود را فروخت و خویش را به تباهى انداخت ، و دیگرى که خود را خرید و آزاد ساخت . [نهج البلاغه]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

دید کلی

مفاهیم ساختار اتمی و هسته‌ای این است که اتم مرکب از هسته و الکترونهایی ‏است که ‏آن را احاطه کرده‌اند و اینکه هسته از پروتون و نوترون ساخته شده است به این پرسش ‏‏اساسی می‌انجامد که:‏ آیا جرم یک اتم خنثی با مجموع جرمهای پروتونها ، نوترونها و الکترونهایی که آن اتم ‏خنثی را تشکیل ‏می‌دهند. برابر است یا نه؟‏ این پرسش را به دقت می‌توان پاسخ داد. زیرا جرم پروتون ، نوترون و الکترون و همچنین جرم‏های تقریبا ‏تمام اتمهای گوناگون معلوم هستند.

img/daneshnameh_up/d/da/enerjihambastegi.jpg

منشأ انرژی همبستگی هسته

در فیزیک یک اصل کلی است که می‌گوید: برای متلاشی کردن یک سیستم یا مجموعه پایدار ‏باید کار ‏انجام داد. مثلا اگر سیستمی از نوترونها و پروتونها ، که هسته اتم را ایجاد می‌کنند، پایدار باشد. برای از ‏هم سوا کردن آنها باید انرژی مصرف نمود.‏ جرم کلی یک هسته پایدار باید کمتر از مجموع جرمهای جداگانه نوترونها و پروتونهای تشکیل ‏دهنده آن ‏باشد. از طریق محاسبه و تجربه معین شده است که اختلافی بین مجموع جرم ‏نوکلئونهای هسته و جرم هسته ‏پایدار وجود دارد. این اختلاف جرم معادل انرژی هست که جهت ‏متلاشی کردن کامل هسته لازم است. این ‏انرژی موسوم به انرژی همبستگی اتم می‌باشد.‏

محاسبه انرژی همبستگی هسته

بررسی جرمهای اتمی شناخته شده نشان می‌دهد که برای هر نوع اتم ، جرم اتمی همواره ‏کمتر از ‏مجموع جرمهای ذرات تشکیل دهنده به حالت آزاد آنهاست. ساده‌ترین اتم که دست ‏کم شامل یک پروتون ، ‏یک نوترون و یک الکترون باشد دوتریم است. در این مورد جرمها عبارتند ‏از:‏

جرم سکون یک پروتون = amu ‏1.007276‏‏
جرم سکون یک نوترون = amu‏ 1.008665‏
جرم سکون یک الکترون = amu‏ 0.000549‏
جرم سکون ذرات تشکیل دهنده در حالت آزاد = amu‏ 2.016490‏
جرم سکون اتم دوتریوم = 2.014102‏ amu
تفاوت (‏Δm = 0.002388amu‏)‏


تفاوت جرم سکون ، ‏Δm‏ ، ممکن است کوچک به نظر آید، لیکن به علت ضریب C2 در ‏رابطه ‏E = mC2 این تفاوت جرم با تفاوت انرژی قابل ملاحظه‌ای مطابقت دارد. بنابرین ‏تفاوت جرم (‏Δm) با تفاوت انرژی (‏ΔE‏) با رابطه ‏ΔE = ΔmC2 به هم مربوط می‌شوند. ‏یک ضریب تبدیل مناسب ‏برای تبدیل جرم اتمی (برحسب واحد جرم اتمی) به انرژی (برحسب مگا الکترون ‏ولت) عبارت ‏است از (‏amu = 93.1Mev‏).‏

بنابرین اگر تشکیل یک اتم دوتریوم را به هنگام ترکیب یک پروتون و یک نوترون (و اتصال با ‏یک ‏الکترون) را در نظر بگیریم، در این فرآیند مقدار جرمی برابر با: ‏Mev = 1amu/931Mev x ‎‎0.002388 amu‏ 2.22 به هنگام ترکیب این سیستم از ذرات ترکیب شونده آن ، پیش از آن که به ‏صورت یک اتم ‏دوتریوم در آمده باشد، به اطراف تابیده است.‏ انرژی از دست رفته مورد نظر را که از محاسبه تفاوت در جرم سکون حاصل شده ، می‌توان با ‏نتیجه یک ‏آزمایش مستقیم مقایسه کرد. وقتی هیدروژن با نوترون بمباران می‌شود. یک نوترون ‏به صورت واکنش زیر ‏گیر می‌افتد:
10n + 11H → 21H + γ


در این واکنش هیچگونه اجزای ذره‌ای که انرژی جنبشی زیادی داشته باشند، ایجاد ‏نمی‌شود. بنابراین جرمی ‏برابر ‏amu‏‏ ‎0.002388‎‏ که تفاوت سبکتر شدن ‏‎21H‏ از ‏‏10n + 11H است، بوسیله اشعه گاما ربوده می‌شود. ‏انرژی این اشعه از طریق آزمایش معین و معلوم شده ‏که ‏MeV‏ 22.2 یعنی درست همان مقدار پیشگویی شده ‏است.‏

برهمکنش هسته دوتریوم با اشعه گاما

واکنش معکوس ، یعنی واکنشی که در آن دوتریم با اشعه گاما بمباران می‌شود، نیز ‏بررسی شده‌است:‏

  • اگر انرژی پرتوهای ‏اشعه‏ کمتر از ‏MeV ‏22.2 باشد، این واکنش صورت نمی‌گیرد. اما اگر ‏پرتوهای ‏V‏ با ‏انرژی ‏MeV ‏22.2 یا بیشتر بکار گرفته شوند، واکنش صورت می‌گیرد. یعنی ‏پروتون و نوترون از هم جدا ‏و آشکار پذیر می‌شوند.
21H + γ → 10n + 11H‎

به دنبال گیر اندازی یک نوترون بوسیله ‏‎11H‏ ، انرژی در یک ‏‏اشعه گاما آزاد می‌شود. این انرژی (‏MeV‏ 22.2) انرژی اتصال دوترون نامیده می‌شود. ‏این انرژی را ‏می‌توان انرژی‌ دانست که وقتی یک پروتون و یک نوترون برای ایجاد یک ‏هسته باهم ترکیب می‌شود، آزاد ‏می‌گردد. برای حصول واکنش معکوس ‏‏(وقتی‎21H ‎‏ با اشعه ایکس بمباران ‏می‌شود) انرژی باید جذب ‏شود.

  • بنابراین می‌توان چنین پنداشت که انرژی اتصال مقدار انرژی لازم برای شکستن ‏هسته به ذرات هسته‌ای ‏سازنده آن است. ‏

انرژی هسته‌ای

مفهوم انرژی هسته‌ای برای تمام مواردی که اجزایی ساده بوسیله نیرویی به هم ‏می‌پیوندند و یک سیستم ‏پیچیده بوجود می‌آورند، بکار می‌آید. مثلا زمین در مداری ‏به دور خورشید قرار گرفته و با جاذبه گرانشی ‏به آن متصل است و در این صورت برای ‏جدا شدن و گریز از خورشید باید مقداری انرژی جنبشی اضافی به ‏آن داده شود.

در یک اتم هیدروژن ‏eV‏ ‏13 لازم است تا الکترون از قید هسته‌ای که با جاذبه الکتریکی ‏به آن اتصال ‏یافته خلاص شود. برعکس ، وقتی یک هسته ‏عریان‎11H ‎‏ الکترونی را گیر ‏می‌اندازد و به یک اتم هیدروژن ‏خنثای پایدار معمولی مبدل می‌شود. سیستم مقداری انرژی برابر با ‏eV‏ 13 ‏بوسیله ‏تابش از دست می‌دهد و این درست انرژی فوتون گسیل یافته‌ای است که در این ‏فرآیند یعنی ، فرآیند ‏گیراندازی الکترون ، مشاهده می‌شود. اما فقط انرژیهای اتصال ‏هسته‌ای آنقدر بزرگ‌ هستند که تفاوت جرم ‏مربوط به آنها قابل اندازه‌گیری می‌شود.‏


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/2/4:: 8:0 عصر     |     () نظر
ایزوتوپها با عدد جرمی آنها مشخص می‌شوند. حتی در حالت پایه بسیاری از ایزوتوپها ناپایدارند که ایزوتوپهای ناپایدار را رادیوایزوتوپ میگویند.

دیدکلی

رادیوایزوتوپها را به عنوان ایزوتوپهای ناپایدار شناختیم. حال این سوال پیش می‌آید که یک رادیوایزوتوپ چگونه می‌تواند به حالت پایدار برسد؟ چه چیزی باعث می‌شود که یک رادیوایزوتوپ پایدار یا رادیواکتیو شود؟ چگونه می‌توان رادیوایزوتوپها را تهیه کرد؟

تاریخچه

در سال 1968 هانری بکرل کشف کرد که اورانیوم ، رادیواکتیو است. اندکی بعد ، رادیوایزوتوپهای موجود در طبیعت از قبیل رادیوم ، پلونیوم کشف شدند. بسیاری از رادیوایزوتوپهای طبیعی دارای نیم عمر طولانی (بزرگتر از 1000 سال) هستند.

حالت پایداری رادیوایزوتوپ

رادیوایزوتوپها با گسیل تابش الکترومغناطیس یا ذرات باردار به سوی پایداری پیش می‌روند. سه فرآیندی که از طریق آنها یک رادیوایزوتوپ سعی می‌کند به پایداری برسد، واپاشی آلفا ، بتا و گاما نامیده می‌شوند.

علت وجود رادیوایزوتوپها

دو نوع نیروی قوی هسته‌ای و الکترومغناطیسی ، پایداری یک هسته را مشخص می‌کند. نیروهای قوی بین یک جفت نوکلئون (مثلا پروتون - پروتون یا نوترون - نوترون) عمل می‌کنند. آنها از نوع نیروی جاذبه هستند. نیروهای الکترومغناطیسی ، تنها بین پروتونها عمل کرده و رانشی هستند. عدم تعادل بین این دو نیرو منجر به ناپایداری و وجود رادیوایزوتوپ می‌شود. رادیوایزوتوپها می‌توانند مثل رادیوم ، پلوتونیوم ، اورانیوم بطور طبیعی وجود داشته باشند و یا به طریق مصنوعی ایجاد شوند. رادیوایزوتوپهای مصنوعی به یکی از 3 روش اساسی زیر تولید می‌شوند.

پرتودهی ایزوتوپهای پایدار در یک راکتور

راکتور هسته‌ای ، چشمه وسیعی از نوترونهای حرارتی است. این نوترونها به راحتی می‌توانند توسط ایزوتوپهای پایدار جذب شوند، که در این صورت ایزوتوپ حاصل دارای یک نوترون اضافی خواهد بود که عدد جرمی آن یک واحد افزایش می‌یابد. ایزوتوپ حاصل ممکن است که رادیواکتیو باشد، یعنی رادیوایزوتوپ داشته باشیم و ممکن است پایدار باشد. معادله می‌تواند به صورت زیر باشد.
AZX+10n→ A+1ZX+γ

که در رابطه فوق AZX ایزوتوپ اولیه با عدد جرمی A و عدد اتمی Z و A+1ZX رادیوایزوتوپ با عدد جرمی A+1 و عدد اتمی Z است که در این رادیوایزوتوپ γ گسیل می‌شود.

پرتودهی ایزوتوپهای پایدار در یک شتابدهنده یا سیکلوترون

شتابدهنده یا سیکلوترون چشمه تعداد زیادی از ذرات باردار پر انرژی در محدوده Meu (مگا الکترون ولت) است که داخل این دستگاه ذره باردار (مثل پروتون ، دوترون هلیوم) به ذره هدف (ایزوتوپ) می‌تابانند و رادیوایزوتوپ تشکیل می‌شود. به فرض برای یک پروتون و هسته sup>AZX> اینگونه می‌توان نوشت.
sup>AZX+11P→> Az+1Y+n

که در آن AZX هسته با عدد جرمی A و عدد اتمی Z و 11P پروتون و AZ+1Y رادیوایزوتوپ حاصله با عدد جرمی A و عدد اتمی Z+1 و n نیز نوترون می‌باشد.

شکافت ایزوتوپهای سنگینتر

از شکافت ایزوتوپهای سنگین تر می‌توان رادیوایزوتوپهای سبکتر تولید کرد. بلا فاصله پس از کشف رادیواکتیویته ، معلوم شد که رادیواکتیو طبیعی از قبیل 22688Ru (رادیوم 226) و 23296Th (توریوم 232) و 21084Po (پلونیوم 210) چشمه‌های با ارزش از ذرات α هستند. واکنشهای این ذرات α ، نوترون تولید می‌کردند. برای بسیاری از هسته‌های سنگین تر (A=200) جذب نوترون به تولید چندین ایزوتوپ با اعداد جرمی ، از مرتبه تقریبا نصف عدد جرمی ایزوتوپ هدف می‌انجامد.

واپاشی رادیوایزوتوپ

رادیوایزوتوپ را می‌توان از واپاشی رادیوایزوتوپ سنگین نیز تولید کرد که رادیوایزوتوپ حاصله را رادیوایزوتوپ دختر می‌گویند. در یک سری رادیواکتیو ، رادیوایزوتوپ دختر بطور پیوسته از واپاشی رادیوایزوتوپ مادر تولید و با آهنگ واپاشی خود از بین می‌رود. مثل سری اورانیوم یا سری توریوم که تولید رادیوایزوتوپهای دختر می‌کنند. برای مثال واپاشی روبیدیوم به صورت زیر است.
(پایدار) 81Rb→81Kr→81Kr


نوشته شده توسط مهدی 85/2/3:: 2:23 عصر     |     () نظر

دید کلی

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

تاریخچه

اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.

img/daneshnameh_up/3/32/reactor_1.jpg

ساختمان راکتور

با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

سوخت هسته‌ای

سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.

img/daneshnameh_up/7/70/reactor_2.jpg

غلاف سوخت راکتور

سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

مواد کند کننده نوترون

یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

خنک کننده‌ها

گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.

img/daneshnameh_up/8/8a/z223.jpg

مواد کنترل کننده شکافت

برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

انواع راکتورها

راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

کاربردهای راکتورهای هسته‌ای

  • راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

  • دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.

کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/2/3:: 2:20 عصر     |     () نظر

شما احتمالاً در کتابهای تاریخ خوانده‌اید که بمب هسته‌ای در جنگ جهانی دوم توسط آمریکا علیه ژاپن بکار رفت و ممکن است فیلم‌هایی را دیده باشید که در آنها بمب‌های هسته‌ای منفجر می‌شوند. درحالیکه در اخبار می‌شنوید، برخی کشورها راجع به خلع سلاح اتمی با یکدیگر گفتگو می‌کنند، کشورهایی مثل هند و پاکستان سلاح‌های اتمی خود را توسعه می‌دهند.


ما دیده‌ایم که این وسایل چه نیروی مخرب خارق‌العاده‌ای دارند، ولی آنها واقعاً چگونه کار می‌کنند؟ در این بخش خواهید آموخت که بمب هسته‌ای چگونه تولید می‌شود و پس از یک انفجار هسته‌ای چه اتفاقی می‌افتد؟

فیزیک هسته‌ای

انرژی هسته‌ای به 2 روش تولید می‌شود:

1- شکافت هسته‌ای: در این روش هسته یک اتم توسط یک نوترون به دو بخش کوچکتر تقسیم می‌شود. در این روش غالباً از عنصر اورانیوم استفاده می‌شود.

2- گداخت هسته‌ای: در این روش که در سطح خورشید هم اجرا می‌شود، معمولاً هیدروژن‌ها با برخورد به یکدیگر تبدیل به هلیوم می‌شوند و در این تبدیل، انرژی بسیار زیادی بصورت نور و گرما تولید می‌شود.

در شکل زیر نمونه ای از شکافت هسته اتم اورانیوم نمایش داده شده است:



و در شکل زیر گداخت هسته‌ای اتم‌های هیدروژن و تبدیل آنها به هلیوم 3 و الکترون آزاد نمایش داده شده است:



طراحی بمب‌های هسته‌ای:

برای تولید بمب هسته‌ای، به یک سوخت شکافت‌پذیر یا گداخت‌پذیر، یک وسیله راه‌انداز و روشی که اجازه دهد تا قبل از اینکه بمب خاموش شود، کل سوخت شکافته یا گداخته شود نیاز است.

بمب‌های اولیه با روش شکافت هسته‌ای و بمب‌های قویتر بعدی با روش گداخت هسته‌ای تولید شدند. ما در این بخش دو نمونه از بمب های ساخته شده را بررسی می کنیم:

بمب‌ شکافت هسته‌ای :
1- بمب‌ هسته‌ای (پسر کوچک) که روی شهر هیروشیما و در سال 1945 منفجر شد.
2- بمب هسته‌ای (مرد چاق) که روی شهر ناکازاکی و در سال 1945 منفجر شد.

بمب گداخت هسته‌ای : 1- بمب گداخت هسته‌ای که در ایسلند بصورت آزمایشی در سال 1952 منفجر شد.

بمب‌های شکافت هسته‌ای:
بمب‌های شکافت هسته‌ای از یک عنصر شبیه اورانیوم 235 برای انفجار هسته‌ای استفاده می‌کنند. این عنصر از معدود عناصری است که جهت ایجاد انرژی بمب هسته‌ای استفاده می‌شود. این عنصر خاصیت جالبی دارد: هرگاه یک نوترون آزاد با هسته این عنصر برخورد کند ، هسته به سرعت نوترون را جذب می‌کند و اتم به سرعت متلاشی می‌شود. نوترون‌های آزاد شده از متلاشی شدن اتم ، هسته‌های دیگر را متلاشی می‌کنند.

زمان برخورد و متلاشی شدن این هسته‌ها بسیار کوتاه است (کمتر از میلیاردم ثانیه ! ) هنگامی که یک هسته متلاشی می‌شود، مقدار زیادی گرما و تشعشع گاما آزاد می‌کند.
مقدار انرژی موجود در یک پوند اورانیوم معادل یک میلیون گالن بنزین است!
در طراحی بمب‌های شکافت هسته‌ای، اغلب از دو شیوه استفاده می‌شود:

روش رها کردن گلوله:
در این روش یک گلوله حاوی اورانیوم 235 بالای یک گوی حاوی اورانیوم (حول دستگاه مولد نوترون) قرار دارد.
هنگامی که این بمب به زمین اصابت می‌کند، رویدادهای زیر اتفاق می‌افتد:
1- مواد منفجره پشت گلوله منفجر می‌شوند و گلوله به پائین می‌افتد.
2- گلوله به کره برخورد می‌کند و واکنش شکافت هسته‌ای رخ می‌دهد.
3- بمب منفجر می‌شود.
در بمب هیروشیما از این روش استفاده شده بود. نحوه انفجار این بمب در شکل زیر نمایش داده شده است:



روش انفجار از داخل:
در این روش که انفجار در داخل گوی صورت می‌گیرد، پلونیم 239 قابل انفجار توسط یک گوی حاوی اورانیوم 238 احاطه شده است.
هنگامی که مواد منفجره داخلی آتش گرفت رویدادهای زیر اتفاق می‌افتد:
1- مواد منفجره روشن می‌شوند و یک موج ضربه‌ای ایجاد می‌کنند.
2- موج ضربه‌ای، پلوتونیم را به داخل کره می‌فرستد.
3- هسته مرکزی منفجر می‌شود و واکنش شکافت هسته‌ای رخ می‌دهد.
4- بمب منفجر می‌شود.
بمبی که در ناکازاکی منفجر شد، از این شیوه استفاده کرده بود. نحوه انفجار این بمب، در شکل زیر نمایش داده شده است.



بمب‌ گداخت هسته‌ای: بمب‌های شکافت هسته‌ای، چندان قوی نبودند!
بمب‌های گداخت هسته‌ای ، بمب های حرارتی هم نامیده می‌شوند و در ضمن بازدهی و قدرت تخریب بیشتری هم دارند. دوتریوم و تریتیوم که سوخت این نوع بمب به شمار می‌روند، هردو به شکل گاز هستند و بنابراین امکان ذخیره‌سازی آنها مشکل است. این عناصر باید در دمای بالا، تحت فشار زیاد قرار گیرند تا عمل همجوشی هسته‌ای در آنها صورت بگیرد. در این شیوه ایجاد یک انفجار شکافت هسته‌ای در داخل، حرارت و فشار زیادی تولید می‌کند و انفجار گداخت هسته‌ای شکل می‌گیرد.در طراحی بمبی که در ایسلند بصورت آزمایشی منفجر شد، از این شیوه استفاده شده بود. در شکل زیر نحوه انفجار نمایش داده شده است.



اثر بمب‌های هسته‌ای:
انفجار یک بمب هسته‌ای روی یک شهر پرجمعیت خسارات وسیعی به بار می آورد . درجه خسارت به فاصله از مرکز انفجار بمب که کانون انفجار نامیده می‌شود بستگی دارد.
زیانهای ناشی از انفجار بمب هسته‌ای عبارتند از :
- موج شدید گرما که همه چیز را می‌سوزاند.
- فشار موج ضربه‌ای که ساختمان‌ها و تاسیسات را کاملاً تخریب می‌کند.
- تشعشعات رادیواکتیویته که باعث سرطان می‌شود.
- بارش رادیواکتیو (ابری از ذرات رادیواکتیو که بصورت غبار و توده سنگ‌های متراکم به زمین برمی‌گردد)

درکانون زلزله، همه‌چیز تحت دمای 300 میلیون درجه سانتی‌گراد تبخیر می‌شود! در خارج از کانون زلزله، اغلب تلفات به خاطر سوزش ایجادشده توسط گرماست و بخاطر فشار حاصل از موج انفجار ساختمانها و تاسیسات خراب می‌شوند. در بلندمدت، ابرهای رادیواکتیو توسط باد در مناطق دور ریزش می‌کند و باعث آلوده شدن موجودات، آب و محیط زندگی می‌‌شود.

دانشمندان با بررسی اثرات مواد رادیواکتیو روی بازماندگان بمباران ناکازاکی و هیروشیما دریافتند که این مواد باعث: ایجاد تهوع، آب‌مروارید چشم، ریزش مو و کم‌شدن تولید خون در بدن می‌شود. در موارد حادتر، مواد رادیواکتیو باعث ایجاد سرطان و نازایی هم می‌شوند. سلاح‌های اتمی دارای نیروی مخرب باورنکردنی هستند، به همین دلیل دولتها سعی دارند تا بر دستیابی صحیح به این تکنولوژی نظارت داشته باشند تا دیگر اتفاقی بدتر از انفجارهای ناکازاکی و هیروشیما رخ ندهد.

 

کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 85/2/2:: 6:35 عصر     |     () نظر

دید کلی

اتم هیدروژن ساده‌ترین اتم‌ها می‌باشد، و همین امر سبب می‌شود که هرگاه مطالعه‌ای در مورد ساختار اتم‌ها انجام شود، ابتدا این مطالعه در مورد اتم هیدروژن شروع می‌شود. بعد از اینکه نتیجه گیری‌ها در مورد اتم هیدروژن با نتایج تجربی و عملی موجود موافق بود، یعنی صحت و درستی تئوری یا نظریه در مورد اتم هیدروژن از نظر تجربی تائید گردید، مطالعه را به اتم‌های دیگر تعمیم می‌دهند. به عنوان مثال کوانتش ترازهای انرژی ، اولین بار در مورد اتم هیدروژن به اثبات رسید، سپس در مورد اتمها دیگر نیز مطالعه شد.

img/daneshnameh_up/2/27/p015.jpg

مشخصات اتم هیدروژن

ساختمان اتم هیدروژن از یک هسته و یک الکترون تشکیل شده است. معلوم شده است که قطر اتم هیدروژن تقریبا یک آنگسترم است و الکترون در این اتم با انرژی 13.6 الکترون ولت (هر الکترون ولت معادل 1.6x10-19 ژول است) به هسته مقید است.

طیف اتم هیدروژن

طیف مربوط به اتم هیدروژن که توسط طیف سنج منشوری یا طیف سنج توری پراش حاصل می‌شود، متشکل از تعدادی خطوط تیزه گسسته ، و روشن در زمینه سیاه است. این خطوط تصویرهای شکاف هستند. در حقیقت ، طیف تمام عناصر شیمیایی که به شکل گاز تک اتمی هستند، مرکب از چنین خطوط روشن است. این طیف به طیف خطی معروف است. در این صورت طیف گسیلی ناشی از اتم هیدروژن ، که یک طیف خطی روشن است، مشخصه هیدروژن است.

طیف اتم هیدروژن به نواحی مختلف تقسیم‌بندی می‌شوند، که هر کدام از این نواحی به افتخار دانشمندانی که آنها را اولین بار تعیین کرده‌اند، به نام آن ثبت شده است. اولین ناحیه فرابنفش است که به سری لیمان معروف است. ناحیه دوم ، ناحیه مرئی است که به سری بالمر معروف است. ناحیه سوم ، ناحیه فروسرخ است که سری پاشن نامیده می‌شود.
ایزوتوپ‌های هیدروژن

  • هیدروژن با عدد اتمی یک و عدد جرمی یک ، یکی از ایزوتوپهای اتم هیدروژن است. این نوع ایزوتوپ فاقد نوترون است.

  • دوتریم با فرمول شیمیایی 21H که عدد اتمی آن یک بوده و عدد جرمی‌اش برابر 2 است. این ایزوتوپ دارای یک نوترون است. این نوع هیدروژن را هیدروژن سنگین نیز می‌گویند.
img/daneshnameh_up/0/07/0p25.jpg

دیدگاه کوانتومی اتم هیدروژن

از آنجا که اتم هیدروژن ساده‌ترین اتمهاست، بنابراین ابتدا معادله شرویدینگر در مورد اتم هیدروژن حل می‌شود. سپس این نتایج با تغییراتی در معادله شرودینگر در مورد عناصر دیگر تعمیم داده می‌شود. بر اساس جوابهای معادله شرودینگر ترازهای انرژی اتم هیدروژن حاصل می‌شوند. به هر تراز اتمی یک عدد کوانتومی اصلی که با n نشان داده می‌شود، تعریف می‌کنند، در حالت پایه الکترون اتم هیدروژن در تراز n=1 قرار دارد. اگر هیدروژن بوسیله عواملی مانند میدان خارجی تحریک شود، در این صورت الکترون تحریک شده و به تراز بالاتر می‌رود که در اینحالت اصطلاحا گفته می‌شود که اتم هیدروژن برانگیخته شده است.

از آنجا که حالت برانگیخته حالت پایداری نیست، لذا الکترون از قوسی به تراز اولیه بر می‌گردد. اختلاف انرژی این دو تراز توسط اتم به صورت تابش الکترومغناطیسی ، گسیل می‌گردد. بر اساس اینکه تعداد انرژی الکترون برانگیخته و یا اختلاف انرژی دو تراز پایه و برانگیخته چقدر باشد، طول موج تابش الکترومغناطیسی حاصل متفاوت خواهد بود. به این ترتیب طیفی حاصل می‌گردد که به طیف اتم هیدروژن معروف است.

فرق دیدگاه کوانتومی و دیدگاه کلاسیکی اتم هیدروژن

در دیدگاه فیزیک کلاسیک ، اتم هیدروژن دارای طیف پیوسته است، در صورتی که دیدگاه کوانتومی طیف گسسته‌ای را پیش بینی می‌کند. این گسسته بودن طیف از کوانتومی بودن انرژی الکترون در ترازهای اتمی حاصل می‌گردد. شایان ذکر است که ایزوتوپهای هیدروژن از مطالعه طیف اتم هیدروژن شناسایی شده‌اند. به عنوان مثال اختلاف بین طیف هیدروژن و طیف دو ترسیم (که در آن جرم هسته تقریبا دو برابر جرم پروتون است) سبب شد که یوری و همکارانش در سال 1932 دوتریم را کشف کنند.


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 85/2/1:: 4:18 صبح     |     () نظر
<   <<   11   12   13   14   15   >>   >