پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یکسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شکل موج جریان را تخریب می کنند. در عوض این شکل موج جریان شکل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شکل موج در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملکرد هارمونیک ها و راه کاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.
کلمات کلیدی: مغناطیس
ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.
ساختمان ترانسفورماتور
ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.
اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛
هسته ترانسفورماتور:
هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایقاند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.
در اثر زیاد شدن مقدار سیلیسیم ، ورقههای دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.
بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقههای ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.
سیم پیچ ترانسفورماتور :
معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده میکنند. اینها با سطح مقطع گرد و اندازههای استاندارد وجود دارند و با قطر مشخص میشوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده میشوند و ابعاد این گونه هادیها نیز استاندارد است.
توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایههای اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکشها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.
قرقره ترانسفورماتور:
برای حفاظ و نگهداری از سیم پیچهای ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.
اندازه قرقره باید با اندازه ى ورقههای ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقههای ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد.
کلمات کلیدی: مغناطیس
تابش الکترومغناطیسی:
هر شی در نجوم بوسیله تابش الکترو مغناطیسی مشاهده می شود بنابر این توجه به برخی از مبانی فیزیک درباره تابش وجذب لازم است .تابش الکترو مغناطیسی فقط یک موج متحرک در میدان مغناطیسی و الکتریکی است که در معادلات ماکسول به هم مربوط می شوند.موج الکترو مغناطیسی باسرعت نور منتشر می شود. C=2.998*108
حاصل ضرب طول موج و فرکانس برابر سرعت نور است.
C = F * g
که به صورت سنتی طیف سنجها طول موج را اندازه گیری می کنند. با وسائل جدید تمام محدوده طیف قابل مشاهده است. تعدادی ازطول موجهایی که فقط می توانند در بالای جو اندازه گیری شوند؛درفنآوری ماهواره ای به کارمی روند.
تابش نور به چندطریق صورت می گیرد:
1-فرآیند پهن شدگی (فرآیند گرما یونی )-تابش جسم سیاه. 2-تابش خطی . 3-تابش سینکروترون ناشی از بارهای الکتریکی شتابدار. ما درباره’ مورد اول بحث خواهیم کرد
تابش جسم سیاه:
جسم گرم در دمای مشخص T گستره پهنی از امواج الکترو مغناطیس تابش می کندو جسم گرمتر آبی تر تابش میکند . برای مثال داخل زمین یک مخزن نور است که مانند یک باطری ضعیف شده کم نورتر وقرمزتر است . این مسئله در ابتدای قرن بیستم در فیزیک کلاسیک حل شده ویکی از موفقیتهای مکانیک کوانتومی شکل گرفته بود. طیف تابش گسیل یافته برای فیزیک کلاسیک یک مشکل بزرگ بود . استفان و بولتزمن کشف کردند که تمام گرمای تابش شده بوسیله سطح جسمی با مساحت A و دمایT برابر است با:
Q=AsT4 s =5.67*108
شدت تابش درواحد حجم که تابع طول موج است ،اندازه گیری شد. موقعیت ماکزیمم ناگهانی در طیف ،توسط قانون جابجایی وینز ((Wiens تشریح شد و مکان بیشترین شدت در طول موج
3 ^10 *2.9 که در آن Tدر مقیاس کلوین است. بنابرا ین طول موج تابش گسیل یافته، نظریه تابشی جسم را ارائه می دهد. تلاشهای رایلی (Rayleigh)برای توضیح مشاهدات از نظر کلاسیکی نا موفق بود .او محاسباتی انجام داد با این فرض که موجها درون کاواک قرار بگیرند وتابش گریزی از سوراخ کوچکی در دیواره کاواک را بدست آورد.فقط طول موجهایی مجازبودند که دقیقا موج بر دیواره کاواک قرار می گرفت (دیواره کاواک مکان گره ها بود).
رایلی فرض کرد که هر گونه طول موج دارای انرژی KT است( K ثابت بولتزمن است).محاسبات پش بینی می کرد که در دمای T تابندگی (شدت تابش ) به طول موج وابسته است.
I(l)= T/landa^4
فرض بالا یک مشکل دارد؛وقتی طول موج صفر می شود شدت بینهایت می گرددواین مساله به عنوان فاجعه فرابنفش شناخته شد. در سال 1900م.پلانگ این مشکل را با گسسته فرض کردن تابش الکترو مغناطیسی حل کرد.او فرض کرد که تابش بوسیله نوسانگرهای الکترو مغناطیسی درون دیواره کاواک تولید میشود.انرژی نوسانگرها فقط می توانست به صور ت گسسته مضربی از بسامد باشدn=0,1,2,3,… ; E=nhn. محا سبات پلانگ تفاوت بنیادی با محاسبا ت رایلی داشت که مقادیر انرژی را پیوسته فرض کرده بود. محاسبات پلانک تابندگی در طول موج خاص را بصورت زیر داد:
I(l)=2*?*h*c^2/[l^5[exp(hc/lkT)-1]]
فرم بالاقانون استفان بولتزمن و قانونوینز را تایید می کند . در طول موجهای زیاد فرمول بال منجر به نتایج رایلی می شود. در واقع در اندازه گیری دمای یک ستاره نوعی طیف سنجی یا نور سنجی میتواند به کار رود. مقایسه بین تابندگی نسبی مقدار نور گسیل شده یک ستاره در دو طول موج:. این نسبت مشخصه دمایی است بنابر این اندازه گیری تمام طیف جسم سیاه الزامی نیست.چون تابندگی در هر دمای مشخص به طور نسبی در شدت 550 nm بهنجار شده است.called V or Visual Band اندازه گیری دوم در تابندگی 440nm (( called B or Blue band )) اندازه گیری دما را ممکن میسازد.
چرا میدان مغناطیسی زمین عوض می شود؟
میدان مغناطیسی یا آهنربایی کره زمین در حال ضعیف شدن است. اگر این کاهش در شدت میدان با همین اهنگ به پیش رود ظرف 1200 سال آینده قطب نماهای سراسر دنیا از کار خواهند افتاد تا مدتی به طرف همه جا ولی در واقع هیچ جا منحرف خواهند شد. سپس به آهستگی پس از گذشت دهها یا صدها سال بار دیگر همراستا خواهند شد اما این بار به سمت جنوب.
نتیجه این می شود که میدان مغناطیسی زمین وارونه خواهد شد این اتفاق پسشتر نیز بارها روی داده است. زمین شناسان در سنگ های مغناطیسی چندین میلیون ساله قراینی یافته اند که این را تایید می کند. روشن است که این پدیده بیانگر مطلب بسیار مهمی درباره هسته درونی زمین است.اما پرسش اینجاست که این مطلب مهم چیست؟ هسته زمین از آهن و نیکل تشکیل شده که بخش عمده ای از انها به حالت گداخته وجود دارد این مایع فلزی پیوسته در جنبش است و این جنبش به نحوی جریانهای الکتریکی به وجود می اورند که میدان مغناطیسی زمین را ایجاد می کنند. جزئیات این فعالیت فلزی گداخته و تغییراتی که در میدان مغناطیسی زمین بوجود می اورد هنوز روشن نشده است برخی از سرنخ هایی که درباره رویدادهای درون زمین در اختیار داریم از بررسی ساختار بیرونی این میدان بسیار گسترده بدست آمده اند این میدان زمین را در محاصره خود دارد و تا صدها هزار کیلومتر در فضا ادامه دارد. میدان مغناطیسی را می توان به صورت مجموعه ای از خط های فرضی تصور کرد که در فضا از قطب جنوب در جنوبگان تا قطب شمال در کانادا قوس می زند و سپس در درون هسته زمین ادامه می یابد تا بار دیگر از قطب جنوب سر در آورد. میدان مغناطیسی زمین همواره نابسامان است. قطب های مغناطیسی زمین 11 درجه با قطب های جغرافیایی زمین فاصله دارند در این میدان پیچش ها و خمیدگی هایی وجود دارد که در آن نواحی ممکن است جهت عقربه قطب نما حتی تا 20 درجه از شمال حقیقی فاصله داشته باشد. دریانوردان این نواحی را از قرن یازدهم هجری تا کنون نقشه برداری کرده اندتا مبادا قطب نماهایشان آنان را از مسیر واقعی منحرف کند. از روی نوشته های آنان در میابیم که شدت میدان مغناطیسی زمین افت و خیز بسیار زیادی دارد.و سالانه در حدود 20 کیلومتر به طرف غرب جابجا می شود در نظر دانشمندان امروزی این بدان معناست که مایع گداخته هسته زمین با سرعتی در حدود نیم میلیمتر در ثانیه در حرکت است. یعنی در روز تقریبا مسافتی برابر نصف طول زمین فوتبال را می پیماید. زمین فیزیکدانان در مقیاس گسترده تر با بررسی مغناطیس هایی که در گدازه های منجمد باستانی محبوس شده اند ردپای میدان مغناطیسی زمین را 30 تا 50 میلیون سال گذشته دنیبال کرده اند همچنانکه سنگ ها گداخته می شوند اتم های آهن موجود در آنها تمایل می یابند با راستای میدان مغناطیسی ان دوره همراستا شوند. این مدارک نشان می دهد که در گذشته میدان مغناطیسی زمین در فاصله های زمانی نامعین از 30 هزار سال گذشته تا 1 میلیون سال وارونه شده است. میدان از این رو به آن رو می شود. یعنی در مدت نزدیک به 100 هزار سال ضعیف می شود و سپس در جهت دیگر افزایش می یابد.
بسیاری از زمین شناسان که درباره علت وارون شدن ها بررسی می کنند اکنون معنقدند که میدان مغناطیسی ضعیفی که بر سطح زمین می سنجیم ( آن قدر ضعیف که آهنربای نعلی شکل اسباب بازی هم 100 برابر از آن نیرومند است) تنها مشتی از خروار است. بخش عمده از فعالیت مغناطیسی زمین در هسته آهنی و نیکلی آن صورت می گیرد برابر مقبول ترین توضیحی که برای این مساله ارائه شده و به نظریه دینامو معروف است بخشی از میدان که در هسته زمین امتداد دارد در مایع باردار و گداخته آن محبوس شده و با چرخش زمین کشیده می شود. درنتیجه به طور مستقیم از هسته نمی گذرد بلکه بارها دور هسته پیچیده می شود تا مانند دسته ای از کش های محکم تشکیل خطوط شار نیرومندی را بدهد. بنابر این نظریه جریان همرفتی فلز گداخته که از اعماق هسته بالا می آید حلقه های کوچکی از این ماده مغناطیسی دور هم پیچیده را به سطح می راند که از اینجا به فضا امتداد می یابند و تشکیل میدان آشنایی را می دهد که می سنجیم. سپس یک بار دیگر به درون هسته شیرجه می روند و سخت دور هسته پیچیده می شوند بدین ترتیب میدان خود را نگه می دارند. در این فرضیه درباره اینکه چه چیزی ممکن است باعث وارونه شدن میدان شود چنین استدلال می شود که طبیعت غیر قابل پیش بینی جریان همرفتی که نقش دارد. اگر در یک نقطه چند حلقه بیشتر از نقطه دیگر جمع شود ذره های میدان که به سطح می رانند در جهت مخالف حلقه می زنند. احتمال دیگر آن است که این وارونه شدن ها به هیچ وجه کاتوره ای و تصادفی نیست. و اگر اطلاعات کافی داشتیم می توانستیم آن ها را پیش گویی کنیم و شاید بر همکنش های الکترومغناطیسی مایع جوشان درون زمین چندان پیچیده اند که وارونگی تصادفی به نظر می رسد اگر چنین باشد شاید روزی دانشمندان بتوانند به ما بگویند که وارونگی بعدی چه هنگام رخ می دهد اما اکنون تنها کاری که می توانیم بکنیم این است که قطب نماهایمان را تماشا کنیم و حدس بزنیم در دل گداخته زمین چه می گذرد.
کلمات کلیدی: مغناطیس
کلمات کلیدی: مغناطیس
کلمات کلیدی: مغناطیس