برای جویای دانش، سربلندی دنیا و رستگاری آخرت است [امام علی علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

مقدمه

آلبرت انیشتین در چهاردهم مارس 1879 در شهر اولم که شهر متوسطی از ناحیه و ورتمبرگ آلمان بود متولد شد. اما شهر مزبور در زندگی او اهمیتی نداشته است، زیرا یک سال بعد از تولد او خانواده وی از اولم عازم مونیخ گردید. پدر آلبرت ، هرمان انیشتین کارخانه‌ کوچکی برای تولید محصولات الکترو شیمیایی داشت و با کمک برادرش که مدیر فنی کارخانه بود از آن بهره‌برداری می‌کرد. گر چه در کار معاملات بصیرت کامل نداشت. پدر آلبرت از لحاظ عقاید سیاسی نیز مانند بسیاری از مردم آلمان گر چه با حکومت پروسیها مخالفت داشت، اما امپراتوری جدید آلمان را ستایش می‌کرد و صدر اعظم آن «بیسمارک» و ژنرال «مولتکه» و امپراتور پیر یعنی «ویلهم اول» را گرامی می‌داشت.

img/daneshnameh_up/6/62/Einestein.png

مادر انیشتین که قبل از ازدواج پائولین کوخ نام داشت بیش از پدر زندگی را جدی می‌گرفت و زنی بود از اهل هنر و صاحب احساساتی که خاص هنرمندان است و بزرگترین عامل خوشی او در زندگی و وسیله تسلای وی از علم روزگار موسیقی بود. آلبرت کوچولو به هیچ مفهوم کودک اعجوبه‌ای نبود و حتی مدت زیادی طول کشید تا سخن گفتن آموخت، بطوری که پدر و مادرش وحشت زده شدند که مبادا فرزندشان ناقص و غیر عادی باشد. اما بالاخره شروع به حرف زدن کرد، ولی غالباً ساکت و خاموش بود و هرگز بازیهای عادی را که مابین کودکان انجام می‌گرفت و موجب سرگرمی کودک و محبّت فی مابین می‌شود را دوست نداشت.

آلبرت مرتباً و هر سال از پس سال دیگر طبق تعالیم کاتولیک تحصیل کرد و از آن لذّت فراوان می‌برد وحتّی در مواردی از دروس که به شرعیات و قوانین مذهبی کاتولیک بستگی داشت چنان قوی شد که می‌توانست در هر مورد که همشاگردانش قادر نبودند به سؤالهای معلّم جواب دهند او به آنها کمک می‌کرد.

انیشتین جوان در ده سالگی مدرسه ابتدائی را ترک کرد و در شهر مونیخ به مدرسه متوسطه «لوئیت پول» وارد شد. در مدرسه متوسطه اگر مرتکب خطایی می‌شدند، راه و رسم تنبیه ایشان آن بود که می‌بایست بعد از اتمام درس ، تحت نظر یکی از معلّمان ، در کلاس توقیف شوند و با درنظر گرفتن وضع نابهنجار و نفرت انگیز کلاسهای درس ، این اضافه ماندن شکنجه‌ای واقعی محسوب می‌شد.

ذوق هنری

ذوق هنری انیشتین چنان بود که او وقتی پنج ساله بود، روزی پدرش قطب نمایی جیبی را به وی نشان داد، خاصّیت اسرار آمیز عقربه مغناطیسی در کوک تأثیر عمیقی گذاشت. با وجود آنکه هیچ عامل مرئی در حرکت عقربه تأثیری نداشت، کودک چنین نتیجه گرفت در فضای خالی باید عاملی وجود داشته باشد که اجسام را جذب کند. وقتی که انیشتین پانزده ساله بود حادثه‌ای اتفاق افتاد که جریان زندگی او را به راه جدیدی منحرف ساخت.

هرمان پدر او در کار تجارت خویش با مشکلاتی مواجه شد و در پی آن صلاح را در آن دیدند که کارخانه خود را در مونیخ بفروشد و جای دیگری را برای کسب و کار خود ترتیب دهند. از آنجا که وی خوش بین و علاقمند به کسب لذّتهایی بود، تصمیم گرفت که به کشوری مهاجرت کند که زندگی در آن با سعادت بیشتری همراه باشد و به این منظور ایتالیا را انتخاب کرد و در شهر میلان مؤسسه مشابهی را ایجاد کرد. هنگامیکه وارد شهر میلان شدند آلبرت به پدر خود گفت که قصد دارد تابعیت کشور آلمان را ترک گوید. آقای هرمان به وی تذکر داد که این کار زشت و نابهنجار است.

دوران دانشجویی

در این دوران مشهورترین مؤسسه فنی در اروپا مرکزی به استثنای آلمان ، مدرسه دارالفنون سوئیس در شهر زوریخ بوده است. آلبرت در امتحان داوطلبان شرکت کرد، ولی بخاطر اینکه در علوم طبیعی اطلاّعات وسیعی نداشت درامتحان پذیرفته نشد. با این حال مدیر دارالفنون زوریخ تحت تأثیر اطلاّعات وسیع او در ریاضیات واقع شد و از او درخواست کرد که دیپلم متوسطه‌ای را که برای ورود به دارالفنون لازم است در یک مدرسه سوئیسی بدست آورد و او را به مدرسه ممتاز شهر کوچک «آرائو»که با روش جدیدی اداره می‌شد معرفی کرد.

بعد از یک سال اقامت در مدرسه مذبور دیپلم لازم را بدست آورد و در نتیجه بدون امتحان در دارالفنون زوریخ پذیرفته شد. با اینکه درسهای فیزیک دارالفنون آمیخته با هیچگونه عمق فکری نبود، باز هم حضور در آنها آلبرت را تحریک کرد که کتب جستجو کنندگان بزرگ این را مورد مطالعه قرار دهد. او ، آثار استادان کلاسیک فیزیک نظری از قبیل: بولتزمان ، ماکسول و هرتز را با حرص عجیبی مطالعه کرد. شب و روز اوقات او با مطالعه این کتابها می‌گذشت و ضمن مطالعه آنها با هنر استادانه‌ای آشنا شد که چگونه بنیان ریاضی مستحکمی ساخت. او درست در خاتمه قرن 19 تحصیلات خود راپایان داد و به مسأله مهم تهیه شغل مواجه شد.

از آنجا که نتوانست مقام تدریسی در مدرسه پلی تکنیک بدست آورد، تنها یک راه باقی ماند و آن این بود که چنین شغل و مقامی در مدرسه متوسطه‌ای جستجو کند. اکنون سال 1910 شروع شده و آلبرت بیست و یک سال داشت و تابعیت سوئیس را بدست آورده بود. او در هنگام داوطلب شغل معلّمی خصوصی گردید و پذیرفته شد. انیشتین از کار خود راضی و حتّی خوشبخت بود که می‌تواند به پرورش جوانان بپردازد، امّا بزودی متوجّه شد معلمّان دیگر نیکی را که او می‌کارد ضایع و فاسد می‌کنند و این شغل را ترک کرد.

بعد از این دوران تاریک ، ناگهان نوری درخشید و بعد از مدّتی در دفتر ثبت اختراعات مشغول به کار شد و به شهر «برن» انتقال یافت. کمی بعد از انتقال به شهر برن انیشتین با میلواماریچ همشاگردی قدیم خود در مدرسه پلی تکنیک ازدواج کرد و حاصل آن دو پسر پی در پی بود که اسم پسر بزرگتر را آلبرت گذاشتند. کار انیشتین در دفتر اختراعات خالی از لطف نبود و حتّی بسیار جالب می‌نمود وظیفه وی آن بود که اختراعات را که به دفتر مذبور می‌آوردند، مورد آزمایش اوّلیه قرار می‌داد.

شاید تمرین در همین کار موجب شده بود که وی با قدرت خارق العاده و بی‌مانند بتواند همواره نتایج اصلی و اساسی هر فرض و نظریه جدیدی را با سرعت درک و استخراج کند. چون انیشتین بخصوص به قوانین کلی فیزیک علاقه داشت و به حقیقت در صدد بود که با کمک محدودی میدان وسیع تجارت را به وجهی منطقی استنتاج کند.

img/daneshnameh_up/1/17/einstein.gif
کسب کرسی استادی دانشگاه

در اواخر سال 1910 کرسی فیزیک نظری در دانشگاه آلمانی پراگ خالی شد. انتصاب استادان این قبیل دانشگاهها طبق پیشنهاد دانشکده بوسیله امپراتور اتریش انجام می‌گرفت که معمولاً حقّ انتخاب خویش را به وزیر فرهنگ وا می‌گذاشت. تصمیم قطعی برای انتخاب داوطلب ، قبل از همه ، بر عهده فیزیکدانی به نام «آنتون لامپا» بود و او برای انتخاب استاد دو نفر را مدّ نظر داشت که یکی از آنها «کوستاو یائومان» و دیگری «انیشتین» بود. «یائومان» آن را نپذیرفت و پس از کش و قوسهای فراوان انیشتین این مقام را پذیرفت.

وی صاحب دو ویژگی بود که موجب گردید وی استاد زبردستی گردد. اوّلین آنها این بود که علاقه فراوان داشت تا برای عدّه بیشتری از همنوعان خود و بخصوص کسانی که در حول و حوش او می‌زیسته‌اند مفید باشد. ویژگی دوّم او ذوق هنریش بود که انیشتین را وا می داشت که نه فقط افکار عمومی خود را به نحوی روشن و منطقی مرتّب سازد، بلکه روش تنظیم آنها به نحوی باشد که چه خود او و چه استفاده کنند از نظر جهان شناسی نیز لذّت می‌برند.

هدف انیشتین این بود که فضای مطلق را از فیزیک براندازد، نظریه نسبیت سال 1905 که در آن انیشتین فقط به حرکت مستقیم الخط متشابه پرداخته بود، انیشتین با کمک اصل تعادل پدیده‌های جدیدی را در مبحث نور پیش بینی کند که قابل مشاهده بوده‌اند و می‌توانست صحت نظریه جدید او را از لحاظ تجربی تأیید کرد.

عزیمت از پراگ

در مدّتی که انیشتین در پراگ تدریس می‌کرد، نه فقط نظریه جدید خود را درباره غیر وی بنا نهاد بلکه با شدّت بیشتری نظریه خود را درباره کوانتوم نو را که در شهر برن شروع کرده بود، توسعه داد. با همه این تفاصیل انیشتین به دانشگاه پراگ اطّلاع داد که در خاتمه دوره تابستانی سال 1912 خدمت این دانشگاه را ترک کرد. عزیمت ناگهانی انیشتین از شهر پراگ موجب سر و صدای بسیار در این شهر شد، در سر مقاله بزرگترین روزنامه آلمانی شهر پراگ نوشته شد: «که نبوغ و شهرت فوق العاده انیشیتن باعث شد که همکارانش او را مورد شکنجه و آزار قرار دهند و به ناچار شهر پراگ را ترک کرد.»

انیشتین عازم شهر زوریخ گردید و در پایان سال 1912 با سمت استادی مدرسه پلی تکنیک زوریخ مشغول به کار شد. شهرت انیشتین به تدریج تا آنجا رسیده بود که بسیاری از مؤسسات و سازمانهای علمی جهان علاقه داشتند که وی به عنوان عضو وابسته با مؤسسه ایشان در ارتباط باشد. سالها بود که مقامات رسمی آلمان کوشش می‌کردند که شهر برلین نه فقط مرکز قدرت سیاسی و اقتصادی باشد، بلکه در عین حال کانون فعالیت هنری و علمی نیز محسوب گردد، به همین جهت از انیشتین دعوت به عمل آوردند. مدّت کمی بعد از ورود انیشتین به برلین ، انیشتین از زوجه خویش هیلوا که از جنبه‌های مختلف با او عدم توافق داشت جدا گردید و زندگی را با تجرد می‌گذارند.

هنگامی که به عضویت آکادمی پادشاهی انتخاب شد، سی و چهار سال سن داشت و نسبت به همکاران خود که از او مسن‌تر بودند بیش از حد جوان می‌نمود. در این حال همه انیشتین را در وهله اوّل مردی مؤدب و دوست داشتنی به نظر می‌آوردند. فعالیت اصلی انیشتین در برلین این بود که با همکاران خویش و یا دانشجویان رشته فیزیک درباره کارهای علمی مصاحبه و مذاکره کند و آنها را در تهیه برنامه جستجوی علمی راهنمایی کند.

انیشتین و جنگ جهانی اول

هنوز یکسال از اقامت انیشتین در برلین نگذشته بود که ماه اوت 1914 جنگ جهانی شروع شد. در مدّت جنگ جهانی اول ، روزنامه‌های برلین همه روزه از وقایع جنگ و شروع فتوحات ارتش آلمان بود. در عین حال انیشتین در منزل خود با دختر عمه خویش الزا آشنایی پیدا کرد. الزا زنی مهربان و خونگرم بود و همچنین او از شوهر مرحوم سابق خود دو دختر داشت، با اینحال انیشتین با او ازدواج کرد. جنگ بین المللی و شرایط معرفت النفسی که در نتیجه آن بر دنیای علم تحصیل گردید مانع از آن نشد که انیشتین با حرارت فوق العاده به توسعه و تکمیل نظریه ثقل خویش بپردازد.

وی با پیمودن راه تفکّری که در پراگ و زوریخ پیش گرفته بود توانست در سال 1916 نظریه‌ای برای ثقل و جاذبه عمومی بنا نهد که مستقل از نظریه‌های گذشته و از نظر منطقی دارای وحدت کامل بود. اهمیت نظریه جدید به زودی مورد تأیید و توجه دانشمندانی واقع گردید که دارای قدرت خلاق علمی بودند. تأیید تجربی نظریه انیشتین توجّه عموم مردم را به شدّت جلب کرده بود از این پس دیگر انیشتین مردی نبود که فقط مورد توجّه دانشمندان باشد و بس. بزودی وی نیز همچون زمامداران مشهور ممالک ، بازیگران بزرگ سینما و تئاتر شهرت عام بدست آورد.

مسافرتهای انیشتین

تبلیغات مخالف و حملاتی که علیه انیشتین می‌شد موجب گردید که در تمام ممالک جهان و در همه طبقات اجتماعی توجّه عموم مردم بسوی نظریه‌های او جلب شود. مفاهیمی که برای توده‌های مردم هیچگونه اهمیتی نداشته است و عامه ایشان تقریبا چیزی از آن درک نمی‌کردند، موضوع مباحث سیاسی گردید. انیشتین در این زمان سفرهای خود را آغاز کرد، ابتدا به هلند ، بعد به کشورهای چک و اسلواکی ، اسپانیا ، فرانسه ، روسیه ، اتریش ، انگلیس ، آمریکا و بسیاری کشورهای دیگر. امّا نکته قابل توجّه این است که وقتی انیشتین و همسر او به بندرگاه نیویورک شدند با استقبال شدید و تظاهرات پر شوری مواجه شدند که به احتمال قوی نظیر آن هرگز هنگام ورود یکی از دانشمندان رخ نداده بود.

انیشتین به آسیا و به کشورهای چین ، ژاپن و فلسطین سفر کرده است و این خاتمه سفرهای او بود. درسال 1924 بعد از مسافرتهای متعدد به اکناف جهان انیشتین بار دیگر در برلین مستقر گردید. حملات همچنان بر او ادامه داشت و نظریات او را به عنوان بیان افکار قوم یهود و به سود فاشیسم می‌دانستند، به این دلیل انیشتین به شهر پرنیستون در آمریکا می‌رود. بعد از چندی همسرش الزا در سال 1936 از دنیا می‌رود و خواهر انیشتین که در فلورانس بود به شهر پرنیستون نزد برادرش آمد.

در همین دوران انیشتین تابیعت کشور آمریکا را می‌پذیرد. انیشتین در سال 1945 طبق قانون بازنشستگی مقام استادی مؤسسه مطالعات عالی پرنیستون را ترک کرد. ولی این تغییر سمت رسمی ، تغییری در روش زندگی و کار او بوجود نیاورد. وی کماکان در پرنیستون بسر می‌برد و در مؤسسه مذبور تجسّسات خود را ادامه دهد.

آخرین سالهای زندگی انیشتین

این دوران تجسس در نیمه انزوای شهر پرنیستون با اضطراب و اغتشاش آمیخته ‌شده بود. هنوز ده سال دیگر از زندگی انیشتین باقی مانده بود، لیکن این دوره ده ساله درست مصادف با هنگامی بود که عصر بمب اتمی شروع می‌گردید و بشریّت تمرین و آموزش خویش را در این زمینه آغاز می‌کرد. بنابراین مسأله واقعی که برای او مطرح شد موضوع چگونگی پیدایش بمب اتمی نبود، با وجود اینکه منظور ما در اینجا دادن چشم اندازی مختصر از روابط انیشتین با حوادث بزرگ سیاسی آخرین سالهای زندگی او می‌باشد، باز هم اگر از دو موضوع اساسی یاد نکنیم همین چشم انداز هم ناقص خواهد بود. یکی از آنها نامه مشهور است که وی می‌بایست برای همکاری خود در شوروی سابق بفرستد و دوم شرح وقایعی است که در اوضاع و احوال فیزیکدانان آمریکایی ، خاصه دانشمندان اتمی ، در داخل مملکت خودشان تغییر بسیار ایجاد کرد.

اکنون می‌توانیم بصورت شایسته‌تری همه آنچه را که گهگاه موجب تیره شدن پایان زندگی وی می‌شد مشاهده کنیم و سرانجام روز هجدهم آوریل 1955 بزرگترین دانشمند و متفکر قرن بیستم ، پیغمبر صلح و حامی و مدافع محنت دیدگان جهان ، مردی که احتمالأ همراه با ناپلئون و بتهوون مشهورتر از همه‌ مردان جهان بوده است، در شهر پرنیستون واقع در ممالک متحده آمریکای شمالی از زندگی و تفکر و مبارزه دست کشید و از دار دنیا رفت و در گذشت.

 

نظریه‌های آلبرت انیشتین(نسبیت عام و خاص)

آلبرت انیشتین دو نظریه دارد. نسبیت خاص را در سن 25 سالگی بوجود آورد و ده سال بعد توانست نسبیت عام را مطرح کند.

نسبیت خاص بطور خلاصه تنها نظریه ایست که در سرعتهای بالا ( در شرایطی که سرعت در خلال حرکت تغییر نکند--سرعت ثابت) میتوان به اعداد و محاسباتش اعتماد کرد. جهان ما جوریست که در سرعتهای بالا از قوانین عجیبی پیروی می کند که در زندگی ما قابل دیدن نیستند. مثلا وقتی جسمی با سرعت نزدیک سرعت نور حرکت کند زمان برای او بسیار کند می گذرد. و همچنین ابعاد این جسم کوچک تر میشود. جرم جسمی که با سرعت بسیار زیاد حرکت می کند دیگر ثابت نیست بلکه ازدیاد پیدا می کند. اگر جسمی با سرعت نور حرکت کند، زمان برایش متوقف می شود، طولش به صفر میرسد و جرمش بینهایت میشود.

نسبیت عام برای حرکتهایی ساخته شده که در خلال حرکت سرعت تغییر می کند یا باصطلاح حرکت شتابدار دارند. شتاب گرانش زمین g که همان عدد 9.81m/sاست نیز یک نوع شتاب است. پس نسبیت عام با شتابها کار دارد نه با حرکت. نظریه ایست راجع به اجرام ی که شتاب ثقل دارند. کلا هرجا در عالم، جرمی در فضا ی خالی باشد حتما یک شتاب جاذبه در اطراف خود دارد که مقدار عددی آن وابسته به جرم آن جسم می باشد. پس در اطراف هر جسمی شتابی وجود دارد. نسبیت عام با این شتابها سر و کار دارد و بیان می کند که هر جسمی که از سطح یک سیاره دور شود زمان برای او کند تر میشود. یعنی مثلا، اگر دوربینی روی ساعت من بگذارند و از عقربه های ساعتم فیلم زنده بگیرند و روی ساعت آدمی که دارد بالا میرود و از سیاره ی زمین جدا میشود هم دوربینی بگذارند و هردو فیلم را کنار هم روی یک صفحه ی تلویزیونی پخش کنند، ملاحظه خواهیم کرد که ساعت من تند تر کار می کند. نسبیت عام نتایج بسیار عجیب و قابل اثبات در آزمایشگاهی دارد. مثلا نوری که به اطراف ستاره ای سنگین میرسد کمی بسمت آن ستاره خم میشود. سیاهچاله ها هم بر اساس همین خاصیت است که کار می کنند. جرم انها بقدری زیاد و حجمشان بقدری کم است که نور وقتی از کنار آنها می گذرد به داخل آنها می افتد و هرگز بیرون نمی آید.

نظریه نسبیت عام
همه ما برای یک‌بار هم که شده گذرمان به ساعت‌فروشی افتاده است و ساعتهای بزرگ و کوچک را دیده ایم که روی ساعت ده و ده دقیقه قرار دارند. ولی هیچگاه از خودمان نپرسیده ایم چرا؟ آلبرت انیشتین در نظریه نسبیت خاص با حرکت شتابدار و یا با گرانش کاری نداشت. اولین موضوعات را در نظریه نسبیت عام خود که در 1915 انتشار یافت مورد بحث قرار داد.نظریه نسبیت عام دید گرانشی را بکلی تغییر داد و در این نظریه جدید نیرو ی گرانش را مانند خاصیتی از فضا در نظر گرفت نه مانند نیرو یی بین اجرام ، یعنی برخلاف آنچه که اسحاق نیوتن گفته بود !در نظریه او فضا در مجاورت ماده کمی انحنا پیدا می‌کرد. در نتیجه حضور ماده اجرام ، مسیر یا به اصطلاح کمترین مقاومت را در میان منحنیها اختیار می‌کردند. با این که فکر آلبرت انیشتین عجیب به نظر می‌رسید می‌توانست چیزی را جواب دهد که قانون ثقل نیوتن از جواب دادن آن عاجز می ماند.سیاره اورانوس در سال 1781 میلادی کشف شده بود و مدارش به دور خورشید اندکی ناجور به نظر می‌رسید و یا به عبارتی کج بود !

نیم قرن مطالعه این موضوع را خدشه ناپذیر کرده بود.بنابر قوانین اسحاق نیوتن می بایست جاذبه ای برآن وارد شود. یعنی باید سیاره ای بزرگ در آن طرف اورانوس وجود داشته باشد تا از طرف آن نیرو یی بر اورانوس وارد شود.در سال 1846 میلادی اختر شناس آلمانی دوربین نجومی خودش را متوجه نقطه ای کرد که « لووریه» گفته بود و بی هیچ تردید سیاره جدیدی را در آنجا دید که از آن پس نپتون نام گرفت.نزدیک ترین نقطه مدار سیاره عطارد به خورشید در هر دور حرکت سالیانه سیاره تغییر میکرد و هیچ گاه دوبار پشت سر هم این تغییر در یک نقطه خاص اتفاق نمی‌افتاد.اختر شناسان بیشتر این بی نظمی ها را به حساب اختلال ناشی از کشش سیاره های مجاور عطارد می دانستند !مقدار این انحراف برابر 43 ثانیه قوس بود. این حرکت در سال 1845 به وسیله لووریه کشف شد بالاخره با ارائه نظریه نسبیت عام جواب فراهم شد این فرضیه با اتکایی که بر هندسه نااقلیدسی داشت نشان داد که حضیض هر جسم دوران کننده حرکتی دارد علاوه برآنچه اسحاق نیوتن گفته بود.وقتی که فرمولهای آلبرت انیشتین را در مورد سیاره عطارد به کار بردند، دیدند که با تغییر مکان حضیض این سیاره سازگاری کامل دارد. سیاره هایی که فاصله شان از خورشید بیشتر از فاصله تیر تا آن است تغییر مکان حضیضی دارند که به طور تصاعدی کوچک می شوند.اثر بخش‌تر از اینها دو پدیده تازه بود که فقط نظریه آلبرت انیشتین آن‌را پیشگویی کرده بود. نخست آنکه آلبرت انیشتین معتقد بود که میدان گرانشی شدید موجب کند شدن ارتعاش اتمها می شود و گواه بر این کند شدن تغییر جای خطوط طیف است به طرف رنگ سرخ! یعنی اینکه اگر ستاره ای بسیار داغ باشد و به طوری که محاسبه می کنیم بگوییم که نور آن باید آبی درخشان باشد در عمل سرخ رنگ به نظر می‌رسد کجا برویم تا این مقدار قوای گرانشی و حرارت ی بالا را داشته باشیم، پاسخ مربوط به کوتوله های سفید است.دانشمندان به بررسی طیف کوتوله های سفید پرداختند و در حقیقت تغییر مکان پیش بینی شده را با چشم دیدند! اسم این را تغییر مکان آلبرت انیشتینی گذاشتند. آلبرت انیشتین می گفت که میدان گرانشی شعاع های نور را منحرف می‌کند چگونه ممکن بود این مطلب را امتحان کرد.اگر ستاره ای در آسمان آن سوی خورشید درست در امتداد سطح آن واقع باشد و در زمان کسوف خورشید قابل رؤیت باشد اگر وضع آنها را با زمانی که فرض کنیم خورشیدی در کار نباشد مقایسه کنیم خم شدن نور آنها مسلم است. درست مثل موقعی که انگشت دستتان را جلوی چشمتان در فاصله 8 سانتیمتری قرار دهید و یکبار فقط با چشم چپ و بار دیگر فقط با چشم راست به آن نگاه کنید به نظر می رسد که انگشت دستتان در مقابل زمینه پشت آن تغییر جا می‌دهد ولی واقعاً انگشت شما که جابجا نشده است!

دانشمندان در موقع کسوف در جزیره پرنسیپ پرتغال واقع در آفریقای غربی دیدند که نور ستاره ها به جای آنکه به خط راست حرکت کنند در مجاورت خورشید و در اثر نیرو ی گرانشی آن خم می شوند و به صورت منحنی در می آیند. یعنی ما وضع ستاره ها را کمی بالاتر از محل واقعیش می‌بینیم.ماهیت تمام پیروزیهای نظریه نسبیت عام آلبرت انیشتین نجومی بود ولی دانشمندان حسرت می کشیدند که ای کاش راهی برای امتحان آن در آزمایشگاه داشتند.ـ نظریه آلبرت انیشتین به ماده به صورت بسته متراکمی از انرژی نگاه می کرد به همین خاطر می گفت که این دو به هم تبدیل پذیرند یعنی ماده به انرژی و انرژی به ماده تبدیل می شود. E = mc²دانشمندان به ناگاه جواب بسیاری از سؤالها را یافتند. پدیده رادیواکتیو ی به راحتی توسط این معادله توجیه شد. کم کم دانشمندان متوجه شدند که هر ذره مادی یک پادماده مساوی خود دارد و در اینجا بود که ماده و انرژی غیر قابل تفکیک شدند.تا اینکه آلبرت انیشتین طی نامه ای به رئیس جمهور آمریکا نوشت که می توان ماده را به انرژی تبدیل کنیم و یک بمب اتمی درست کنیم و آمریکا دستور تأسیس سازمان عظیمی را داد تا به بمب اتمی دست پیدا کند. برای شکافت هسته اتم اورانیوم 235 انتخاب شد. اورانیوم عنصری است که در پوسته زمین بسیار زیاد است. تقریباً 2 گرم در هر تن سنگ! یعنی از طلا چهارصد مرتبه فراوانتر است اما خیلی پراکنده.در سال 1945 مقدار کافی برای ساخت بمب جمـع شـده بود و ایـن کار یعنی ساختن بمب در آزمایشگاهــی در « لوس آلاموس » به سرپرستی فیزیکدان آمریکایی «رابرت اوپنهایمر» صورت گرفت. آزمودن چنین وسیله ای در مقیاس کوچک ناممکن بود. بمب یا باید بالای اندازه بحرانی باشد یا اصلاً نباشد و در نتیجه اولین بمب برای آزمایش منفجر شد. در ساعت 5/5 صبح روز 16 ژوئیه 1945 برابر با 25 تیرماه 1324 و نیرو ی انفجاری برابر 20 هزار تنT.N.T آزاد کرده دو بمب دیگر هم تهیه شد. یکی بمب اورانیوم بنام پسرک با سه متر و 60 سانتیمتر طول و به وزن 5/4 تن و دیگری مرد چاق که پلوتونیم هم داشت. اولی روی هیروشیما و دومی روی ناکازاکی در ژاپن انداخته شد. صبح روز 16 اوت 1945 در ساعت 10 و ده دقیقه صبح شهر هیروشیما با یک انفجار اتمی به خاک و خون کشیده شد. با بمباران هیروشیما جهان ناگهان به خود آمد، 160000 کشته در یک روز وجدان خفته فیزیکدان ها بیدارر شد! « اوپنهایمر» مسئول پروژه بمب و دیگران از شدت عذاب وجدان لب به اعتراض گشودند و به زندان افتادند. آلبرت انیشتین اعلام کرد که اگر روزی بخواهم دوباره به دنیا بیایم دوست دارم یک لوله‌کش بشوم نه یک دانشمند!



کلمات کلیدی: کوانتوم، فیزیک نوین


نوشته شده توسط مهدی 85/1/23:: 10:22 صبح     |     () نظر

دیدکلی

می‌دانیم که تمام قوانین حرکت ، چه قوانین نیوتن و چه قوانین ماکسول برای میدانهای الکترومغناطیسی متحرک ، باید با یک چارچوب مرجع همراه باشند. در عین حال ، یک فرآیند فیزیکی نباید به چارچوبی که ناظر برای مشاهده آن انتخاب کرده است، وابسته باشد. پس قوانین فیزیکی را باید به صورتی نوشت که در سیستم‌های مختصات مختلف شکلشان حفظ شود. بنابراین تبدیلی که با اعمال آن فرم ریاضی قانون فیزیکی در چارچوب‌های مختلف لخت ، ثابت بماند، اهمیت اساسی دارد. تبدیل که در زمان نیوتن رواج داشت، تبدیلات گالیله بود:


این تبدیل در اینجا برای دو چارچوب لخت ، پریم‌دار و بدون پریم ، که نسبت به هم با سرعت در جهت x حرکت می‌کنند، بیان شده است.
تاریخچه

اینکه قوانین نیوتن تحت تبدیلات گالیله ناوردا هستند، مطلبی شناخته شده بود. با وجود این نیوتن معتقد بود که قوانینش به یک چارچوب مرجع مطلق وابسته است. البته این فکر کاملا متافیزیکی است، چون خود او اصل نسبیت در مکانیک را وضع کرده بود که بر طبق آن ، تعیین حرکت مستقیم الخط یک جسم متحرک ، یا یک چارچوب مرجع ، نسبت به این سیستم مطلق غیر مطلق ناممکن است.

برای مثال شتاب و نیرو در این دو چارچوب مرجع مشابه‌اند، چون طبق روابط (1) داریم:



پس F"=ma تحت تبدیلات گالیله به صورت F=ma در می‌آید، یعنی تحت این تبدیلات ناوردا است. دلیل این ناوردایی عدم ظهور سرعت در معادله حرکت است.

معادلات ماکسول و تبدیلات گالیله

اگر تبدیلات گالیله را در مورد معادلات ماکسول اعمال کنیم، شکل معادلات در سیستم‌های مختصات مختلف فرق خواهد کرد، چون سرعت انتشار امواج الکترومغناطیسی در معادلات ظاهر می‌شود، لذا وقتی این سرعت به صورت برداری جمع شود، در سیستم‌های مختصات مختلفی که نسبت به هم حرکت می‌کنند، مقادیر مختلفی خواهد داشت. تفاوت سرعت چند مفهوم ضمنی دارد، اول اینکه تشخیص چارچوب مرجع مطلق به روش الکترومغناطیسی یا نوری ممکن خواهد بود. در آن زمان فرض می‌شد که نور برای انتشار نیاز به محیط خاصی دارد، و این محیط اتر نامیده می‌شد.

این حقیقت که معادلات ماکسول تحت تبدیلات گالیله تغییر می‌کنند، مستلزم این بود که سیستم مرجعی وجود داشته و اتر نسبت به آن ساکن باشد. سرعت نور در این چارچوب مطلقا ساکن ، C است و احتمالا در یک چارچوب مرجع دیگر C نخواهد بود. اینکه سرعت نور در دو سیستم مختصات مختلف تحت تبدیلات گالیله متفاوت است، از رابطه (1) پیداست. اگر سرعت نور در یک چهارچوب S (بدون پریم) dx/dt باشد، در چهارچوب "S که نسبت به S با سرعت حرکت می‌کند، به صورت خواهد بود.

ثابت بودن سرعت نور

با این حال آزمایش فیزو ، آزمایش مایکلسون - مورلی و آزمایشهای متعدد دیگری که هدفشان بررسی دقت معادلات ماکسول در چارچوبهای مرجع متحرک بود، نشان داد که بی‌شک سرعت نور در تمام جهتها و در تمام سیستم‌های مرجع متحرک یکسان است. بنابر این نتیجه می‌گیریم که معادلات ماکسول باید در تمام مختصات لخت شکل خود را حفظ کند.

تبدیلات لورنتس

لورنتس که سعی می‌کرد تبدیلات گالیله را بهبود بخشد، تبدیل جدیدی یافت که تحت آن معادلات ماکسول در سیستم‌های مختصات مختلفی که نسبت به هم حرکت دارند، تغییر نمی‌کرد و به این ترتیب اساس نسبیت خاص بنا نهاده شد. این تبدیل اکنون تبدیلات لورنتس نامیده می‌شود:





کمی‌ بعد پوانکاره نشان داد که تمام معادلات الکترودینامیک تحت تبدیلات لورنتس شکل خود را حفظ می‌کند. یک امتحان ساده نشان می‌دهد که در تبدیلات لورنتس . انیشتین در سال 1905 این فکرها را تعمیم داد و به صورت نسبیت خاص فعلی در آورد. او نشان داد که با پذیرفتن نسبیت نیوتن ، می‌توان تبدیلات لورنتس را بدست آورد. انیشتین فرض کرد که سرعت نور یک ثابت جهانی و مستقل از حرکت چشمه آن است.

گرچه ریشه نسبیت خاص در الکترومغناطیس بود، ولی روش انیشتین وابستگی صریحی به الکترودینامیک نداشت. چون معادلات ماکسول تنها یکی از قوانین فیزیکی است که اصول نسبیت خاص آن را در بر می‌گیردف بنابر این نسبیت خاص نتایج وسیعی داشت. به این ترتیب مفهوم اتر از بین رفت.

مفهوم زمان در نسبیت خاص

بر اساس اصل دوم نسبیت خاص مفهوم کلاسیکی زمان ، به عنوان یک متغیر مستقل از دستگاه مختصات و حرکت نسبی از بین رفت و مفهوم پیچیده و مشکل فضا_زمان جانشین آن شد. در همزمانی وقایع باید تجدید نظر کرد. وقایعی که در یک سیستم مختصات همزمان هستند، لزوما در سیستم دیگری که نسبت به اولی حرکت دارد، همزمان نیستند. این ایده‌ها چنان تکان دهنده بود که خیلی‌ها به تندی با آن مخالفت کردند و شاید هنوز هم می‌کنند. برای ارائه فرضیه‌ای که به اصل موضوع دوم محتاج نباشد، کوشش‌های هوشمندانه بسیاری شد. تاکنون آزمایشهای مختلف و متعددی پیش‌بینی‌های نسبیت خاص را تصدیق کرده‌‌اند، طوری که تنها می‌توان فرضیه‌های سازگار با نسبیت خاص را در نظر گرفت.

قوانین کلاسیک و تبدیلات لورنتس

قوانین کلاسیک الکترودینامیک که تحت تبدیلات گالیله ناوردا هستند، با تبدیلات لورنتس نیز ناوردا می‌مانند. ولی معادلات مکانیک کلاسیک که تحت تبدیلات گالیله ناوردا بودند، اکنون با تبدیلات لورنتس ناوردا نیستند، یعنی یا باید آنها را دور ریخت و یا با معادلات نسبیتی جایگزین کرد. در معادلات نسبیتی جرم یک جسم m که با سرعت v حرکت می‌کند، با جرم آن در حالت سکون ، ، به صورت زیر مرتبط است:


خوشبختانه این تنها تصحیح لازم برای قوانین مکانیک است. در سرعتهای کم که معادلات نسبیتی به قوانین حرکت نیوتن تبدیل می‌شوند. لزوم تصحیح نسبیتی در قوانین حرکت خیلی زود با آزمایش تائید شد. برای مثال الکترونها را می‌توان در یک شتابدهنده شتاب داد و سرعتشان را نزدیک به سرعت نور رساند، طوری که جرمشان چند هزار برابر شود.

انرژی سکون

با بسط رابطه (4) یک جمله نتیجه می‌شود که انیشتین ، لویس و دیگران آن را انرژی سکون تشخیص دادند. پیش‌بینی این انرژی بسیار زیاد جرم ، در آزمایش‌های شکافت (فیزیون) و ابزارهای هسته‌ای تایید شد.

شاید بهترین و ساده‌ترین مثال نشان دهنده هنگامی ‌باشد که یک الکترون و پاد الکترون (پوزیترون) ، که جرم هر دو است، ترکیب می‌شوند. این دو همدیگر را نابود می‌کنند و دو اشعه گاما بوجود می‌آید. انرژی اشعه گاما با انرژی سکون دو ذره قبل از برخورد ، ، برابر است.

 

تبدیلات گالیله

دید کلی

در برسی حرکت هر ذره باید یک چارچوب مرجع تعین کنیم که این چارچوب به عنوان ناظر در فیزیک تعبیر می‌شود. بعد از تعیین چارچوب مرجع به راحتی می‌توانیم حرکت را مورد برسی قرار دهیم. البته لازم به ذکر است که در مورد هر حرکت ، چارچوب خاصی متناسب با نوع حرکت باید بکار ببریم. این مسئله نه تنها در مورد حرکت بلکه در مورد تمام رویدادها و پدیده‌های فیزیکی مطرح است.

به عنوان مثال برای اینکه بتوانیم در الکترو مغناطیس مقدار نیروی وارد بر یک جسم باردار را محاسبه کنیم، ابتدا باید یک چارچوب متناسب با سیستم تعریف کرده ، سپس پدیده را مورد برسی قرار دهیم. حال سوال این است که اگر این چارچوب مرجع تغییر بکند (به عنوان مثال اگر چارچوب مرجع منتقل شود) ، در این صورت چه تغییری در برسی حاصل خواهد شد. این مسئله بوسیله قواعد تبدیل بیان می‌شود.

تعریف

معادلاتی که در فیزیک کلاسیک مختصات فضا و زمان دو دستگاه مختصات را ، که با سرعت ثابت نسبت به یکدیگر حرکت می‌کنند به هم مربوط می‌سازند، تبدیلات گالیله یا نیوتنی نامیده می‌شوند. هر ناظر با مشخص کردن مکان و زمان یک پدیده فیزیکی ، مانند یک بمب کوچک ، هر رویدادی را می‌تواند توصیف کند. اگر مختصات فضایی و زمانی یک رویداد ، از نظر ناظر S1 بصورت:

(t1 x1 y1 z1)
و از نظر ناظر S2 بصورت:
(t2 x2 y2 z2)
باشد، و ناظر دوم نسبت به ناظر اولی با سرعت یکنواخت v حرکت بکند، در این صورت تبدیلات گالیله به شرح زیر خواهد بود:

تبدیلات گالیله
x2 = x1 - vt1
y2 = y1
z2 = z1
t2 = t1

لازم به ذکر است که تبدیلات سرعت و شتاب نیز با مشتق گیری از روابط فوق حاصل می‌شود.
هموردایی مکانیک کلاسیک در تبدیلات گالیله

در فیزیک به عنوان یک اصل پذیرفته می‌شود که ، قوانین فیزیک در تمام دستگاههای لخت یکسان ، یا هموردا ، هستند. یعنی شکل ریاضی یک قانون فیزیکی یکسان باقی می‌ماند. به عبارت دیگر می‌توان گفت که باید قوانین فیزیک تحت تبدیلات گالیله یکسان باقی بمانند. از جمله قوانین فیزیکی که تحت این تبدیلات فرم ریاضی خود را حذف می‌کنند، قوانین بقای اندازه حرکت خطی و قانون بقای انرژی است. همچنین قانون دوم نیوتن نیز که قانون بقای اندازه حرکت خطی از آن نتیجه می‌شود، فرم ریاضی خود را حفظ می‌کند.

به عبارت دیگر می‌توان گفت که تبدیلات گالیله و مکانیک کلاسیک مستلزم آن هستند که سه کمیت اساسی در آزمایشهای فیزیکی ، یعنی طول ، زمان و جرم همگی از حرکت نسبی هر ناظری مستقل باشد. البته فیزیک نسبیت انیشتن در این عقیده تجدید نظر می‌کند. و بجای طول ، زمان ، جرم و انرژی، دو قانون بقای جدید بوجود می‌آورد. یعنی طول و زمان را باهم ادغام کرده و یک کمیت ناوردا در فضای چهار بعدی بوجود می‌آورد و نیز قانون بقای جرم و انرژی را هم یکجا در رابطه هم ارزی جرم و انرژی بیان می‌کند.

الکترو مغناطیس و تبدیلات گالیله

در اوایل توسعه نظریه موجی نور این سوال مطرح شد که آیا امواج الکترومغناطیسی در محیط واقعی منتشر می‌شوند یا در اتر. اگر انتشار در اتر انجام می‌شد، در آن صورت فرض بر این بود که محور‌های مختصات واقع در آن محیط باید چارچوب مشخصی را تشکیل دهند، بطوری که همه ناظرها نسبت به آن ساکن یا در حرکت نسبی باشند. حال به خوبی می‌دانیم که همه کوششهای تجربی برای کشف وجود یک محیط ساکن که در آن امواج الکترومغناطیسی منتشر شوند با شکست مواجه شد.

لذا نتیجه می‌گیریم که از نظر هر ناظر لخت ، نور در فضا با تندی استاندارد c ، بدون توجه به حالت یکنواخت او نسبت به هر چارچوب مختصات دیگر بطور همسانگرد منتشر می‌شود. ناوردایی سرعت نور بر این شرط فیزیکی دلالت دارد که معادله‌های الکترومغناطیس باید در اثر تبدیل مختصات هر چارچوب مرجع ، در حرکت یکنواخت نسبت به چارچوب اصلی به طریقی تبدیل شوند، که صورت اصلی‌شان حفظ شود. اما معادله موج که از معادلات ماکسول حاصل می‌شود ، تحت تبدیلات گالیله شکل ریاضی خود را حفظ نمی‌کند. بنابراین ، بجای استفاده از تبدیلات گالیله از تبدیلات لورنتس که یک جایگزین قوی برای تبدیلات گالیله است، استفاده می‌کنیم.

دلایل ضعف تبدیلات گالیله

  • براساس تبدیلات گالیله جرم ، زمان و طول همواره مستقل از حرکت نسبی ناظر ناوردا می‌باشند. در صورتی که می‌دانیم در سرعتهای نزدیک به سرعت نور در اثر حرکت ، انقباض طولی و اتساع زمان خواهیم داشت. جرم ذره نیز با جرم در حالت سکون آن متفاوت خواهد بود.

  • بر اساس تبدیلات گالیله صورت و فرم معادلات ماکسول هنگام تبدیل مختصات تغییر می‌کنند.

  • بر اساس تبدیلات گالیله سرعت نور نمی‌تواند مستقل از حرکت نسبی ناظرها باشد. در صورتی که می‌دانیم بر اساس اصل موضوع نسبیت خاص ، سرعت نور باید مستقل از حرکت نسبی ناظرها مقداری ثابت باشد.

نتیجه‌گیری نهایی

بر اساس دلایل فوق می‌توان چنین نتیجه گرفت که ، تبدیلات گالیله نمی‌توانند یک تبدیل جامع و کامل باشد. لذا باید از یک تبدیل جامعتر که قادر به توضیح تمام قوانین فیزیک باشد، استفاده کنیم. چنین تبدیلی ، تبدیلات لورنتس می‌باشد. این تبدیل بر اساس دو اصل ، ناوردایی سرعت نور و اصل هم ارزی ایجاد شده است.

تبدیلات لورنتس (Lorentz transformations)

اطلاعات اولیه

در اواخر قرن نوزدهم ، بعد از اینکه نظریه الکترومغناطیس کلاسیک به صورت کنونی اش توسعه یافت، نیاز به یک نظریه نسبیت رضایتبخش در فیزیک احساس شد. در آن زمان آشکار شد که مشاهدات تجربی انتشار نور در ارتباط با اثر‌های حرکت ناظر نسبت به محیطی که فرض می‌شد نور در آن حرکت می‌کند تناقض‌هایی با عقاید رایج آن زمان دارد. برای داشتن توصیفی از حرکت نور که با تجربه سازگار باشد، لازم شد قانون تبدیل پیشنهادی لورنتس که مختصات چارچوبهای دارای حرکت نسبی یکنواخت را به هم مربوط می‌سازد، پذیرفته شود. این قانون تبدیل ، به نام تبدیلات لورنتس معروف است.

تعیین تبدیلات لورنتس

به طور خلاصه می‌توان گفت که ، تبدیل مختصات در چارچوبهای لخت که از نظر نسبیت صحیح باشد، توسط دو اصل حاکم زیر تعیین می‌شود:

  • در تمام چارچوبهای لخت ، نور به طور همسانگرد با سرعت ثابت c میسر را می‌پیماید.
  • تمام چارچوبهای مرجع لخت در بیان قوانین فیزیکی به طور یکسان معتبر هستند.


با اعمال دو اصل فوق می‌توان تبدیلات لورنتس را به روش مقدماتی بدست آورد. بنابراین اگر دو چارچوب مختصه متعامده E1 و E2 ، را که با سرعت نسبی ثابت U در امتداد محور ایکس (X) شان حرکت می‌کنند در نظر بگیریم. در اینصورت هرگاه مختصات یک رویداد در چارچوب اول را با X1y1 z1 t1 و مختصات همان رویداد در چارچوب دوم را با x2 y2 z2 t2 نشان دهیم، در اینصورت تبدیل لورنتس که بیانگر روابط تبدیل بین مختصات رویداد مورد نظر هنگام رفتن از یک چارچوب به چارچوب دیگر است، به صورت زیر خواهد بود.

X2=(vt + x1⁄1-(v/c)21/2
y1=y2

Z2=z1

T2=(t1+Vx/c2)/1-(v/c)21/2


اصل توافق

  • ملاحظه کردیم که قبل از بوجود آمدن نسبیت ، تبدیلات گالیله به عنوان یک رابطه تبدیل خوب محسوب می‌گردید. و تنها در توجیه نتایج الکترومغناطیس با شکل مواجه شد. بنابراین با پیدایش ، ضرورت ایجاد یک تبدیل مناسب در فیزیک احساس می‌شد. بنابراین جهت برآوردن این نیاز ، تبدیلات لورنتس بوجود آمد. بنابراین می‌توان گفت که نظریه نسبیت ، نسبت به مکانیک کلاسیک که بر اساس قوانین نیوتن بنا نهاده شده بود، حالت کلی و جامع‌تر داشت.

  • اصل توافق بیان می‌کند که یک نظریه عامتر باید در حالت جدی به نظریه قبلی تبدیل شود. و این اصل در مورد نظریه نسبیت برقرار است. یعنی اگر سرعت ذره در مقایسه با سرعت نور خیلی کوچک باشد، به راحتی و با خیال راحت می‌توانیم از قوانین نیوتن و مکانیک کلاسیک برای تشریح حرکت ذره استفاده کنیم.

  • از طرف دیگر تبدیلات لورنتس نیز که نسبت به تبدیلات گالیله حالت عامتری دارد، بر اساس اصل فوق باید در حالت حدی به تبدیلات گالیله تحویل گردد. و اگر روابط مربوط به تبدیلات لورنتس را در نظر بگیریم ملاحظه می‌شود که در حالت حدی که سرعت ذره در مقایسه با سرعت نور خیلی کوچک باشد، تبدیلات لورنتس به تبدیلات گالیله تحویل می‌گردد. به عبارت دیگر می‌توان گفت که درست بعد از اینکه تبدیلات لورنتس برای توصیف صحیح انتشار نور از نظر ناظر در حال حرکت پذیرفته شد، دقت و تقریبی که به طور پنهان در قوانین مکانیک کلاسیک نیوتن وجود داشت، صرفا به عنوان نتیجه‌ای از کشف تبدیلات لورنتس به دست آمد.

شرط تعامد تبدیلات لورنتس

  • تبدیلات لورنتس که رابطه بین مختصات مکانی و زمانی یک رویداد را در چارچوب مرجع لخت که نسبت به یکدیگر با سرعت ثابت حرکت می‌کند، بدست می‌دهد. اما این تبدیل متعامد نیست. تعامد را اینگونه می‌توان تشریح کرد که اگر مختصات مکانی و زمانی یک رویداد را در هر چارچوب مرجع با یک ماتریس ستونی نمایش دهیم، در اینصورت رابطه تبدیل به صورت یک ماتریس 4x4 خواهد بود که هرگاه ماتریس مختصات رویداد در یک چارچوب را در آن ضرب کنیم، مختصات همان رویداد در چارچوب دیگر که نسبت به چارچوب اول با سرعت یکنواخت حرکت می‌کند، حاصل می‌گردد. این ماتریس به عنوان ماتریس تبدیل معروف است.

  • حال اگر مختصات مکانی و زمانی یک رویداد را بصورت (t, x, y, z ) در نظر بگیریم، تبدیلات لورنتس متعامد نخواهد بود. برای حل مشکل مینکوسکی (Minkowski) ترفند استفاده از مختصه زمان موهومی را پیشنهاد کرد. به عبارت دیگر مختصات مکانی زمانی یک رویداد باید به صورت (ict,x,y,z) فرض شود. بنابراین تبدیلات لورنتس از نوع مینکوسکی متعامد خواهد بود.

  • لازم به ذکر است که نباید به کمیت‌های موهومی که در قالب مختصات مینکوسکی (یک دستگاه متعامد قراردادی چهار بعدی) ظاهر می‌شوند. اهمیت فیزیکی قائل شد. زیرا اینها صرفا نتیجه اعمال ترفند ریاضی در نوشتن مختصات یک رویداد است.

ناوردایی عنصر جهان – خط

از فیزیک نوین می‌دانیم که در سرعتهای نزدیک به سرعت نور ، کمیت‌های طول ، زمان ، جرم دیگر مفهوم کلاسیکی مطلق بودن خود را به طور کامل از دست داده و تابع سرعت می‌باشند. به گونه‌ای که انقباض طول ، اتساع زمان و افزایش جرم ملاحظه می‌گردد. اما در عوض کمیتی به نام عنصر جهان خط وجود دارد که مستقل از سرعت بوده و یک کمیت ناوردا می‌باشد. شرط ناوردایی این کمیت تحت تبدیلات لورنتس ایجاب می کند که اگر مختصات فضا زمان یک رویداد را بصورت (t, x, y, z ) نشان دهیم، این کمیت ناوردا بصورت زیر باشد.

S2=(ct)2-X2-y2-Z2


کمیت فوق در چارچوبهای لخت ناوردا است. معلوم می‌شود که هرگاه کمیت فوق با نقاط واقع در مسیر باریکه نور در حال انتشار متناظر باشد، ناظرهای واقع در تمام چارچوبهای لخت مقدار ثابت مشابهی را برای آن ثبت می‌کنند.


همچنین ملاحظه کردیم که به منظور استفاده از مزایای دستگاه متعامد و خواص تبدیل آنها در مختصات چهار بعدی رویدادها در فضا - زمان مینکوسکی ترفند استفاده از مختصه زمانی موهومی را پیشنهاد کرد. به عبارت دیگر مختصات فضا - زمان یک رویداد را باید به صورت (ict,x,y,z) نمایش دهیم. 
 



کلمات کلیدی: کوانتوم، فیزیک نوین


نوشته شده توسط مهدی 85/1/23:: 10:19 صبح     |     () نظر
<   <<   11   12