|
کلمات کلیدی: اپتیک
هدف
هدف از انجام این آزمایش تحقیق قوانین اسنل و دکارت میباشد.
یک نقاله پلاستیکی سفید - یک ظرف - مقداری آب - شیشه - یک چشمه نور قابل تنظیم - یک ورقه صیقلی شده نقره یا فولاد.
همه اجسام ، چه شفاف و چه کدر ، مقداری از نور را که به آنها برخورد میکنند، بازتاب میدهند. بیشتر سطحها نور را در راستاهای زیادی میفرستند. به کمک این نور بازتابی است که اجسام روشن شده را میبینیم و آنها را از محیط اطرافشان تشخیص میدهیم. وقتی نور به یک سطح برخورد میکند قسمتی از آن منعکس میشود و قسمتی به داخل آن ماده وارد میشود. قسمتی که منعکس میشود پرتو بازتابیده است که طبق قانون بازتابش با زاویه فرود برابر است.
البته طبق همین قانون میدانیم که پرتو فرودی ، پرتو بازتابیده و خط عمود بر سطح در نقطه تماس همگی در یک صفحه واقعند. قسمت دیگر نور فرودی که وارد محیط دوم میشود پرتو شکست نام دارد و متناسب با قانون دوم اسنل زاویه آن با خط عمود بنا به رابطه:
که ө1 زاویه فرود و ө2 زاویه شکست و n1 و n2 به ترتیب ضریب شکست محیط اول و دوم است، رفتار میکند. مجددا طبق همین قانون ، پرتو فرودی ، پرتو شکست و عمود بر سطح همگی در یک صفحه قرار دارند. ضریب شکست به جنس محیط بستگی دارد.
که n21 ثابتی است که به آن ضریب شکست محیط 2 به محیط 1 میگویند. ضریب شکست یک محیط نسبت به محیط دیگر عمدتا با طول موج تغییر میکند. با استفاده از همین خاصیت شکست است که میتوانیم باریکه نور را به طول موجهای تشکیل دهنده آن تجزیه کنیم.
صفحه سفیدی را در اتاقک تاریکی قرار داده ، آینهای را بر این صفحه منطبق کنید. سپس جسمی را روبروی این مجموعه قرار دهید. منبع نوری را در فاصله مشخصی از این مجموعه قرار دهید. عمل منبع نور روی صفحه سفید چگونه است؟ روی آینه چطور؟ مشاهدات خود را بر اساس کدام قانون فیزیک نور توضیح میدهید؟
مشاهده میکنید که کاغذ کاملا روشن به نظر میرسد و نسبت به زمینه تاریک رنگ آن سفید است. با اینکه شدت نوری که به هر سطح میرسد تقریبا مساوی است، چنانکه از بازتابش شمع سفید در آینه معلوم است، آینه نور را خیلی خوب بازتاب میدهد. پس چرا در عکس کاغذ روشنتر از آینه است.
آینه بازتابنده خوبی است و نور لامپ را که دور از دوربین عکاسی است باز میتابد، ولی جهت بازتابش آن که یگانه هم هست در جهت دوربین نیست. پس پرتو بازتابی به دوربین نمیرسد به همین جهت تاریک به نظر میرسد، در حالی که کاغذ بازتابنده خوبی نیست و نور فرودی را در تمام جهتها باز میتاباند و قسمتی از آن هم به دوربین عکاسی میرسد، به همین جهت قسمتی از آن روشن به نظر میرسد.
یک صفحه مقوایی سفید را روی یک بازتابنده خوب مثل یک آینه قرار دهید و منبع نور را چنان قرار دهید که پرتو نور مماس بر صفحه مقوایی باشد. سعی کنید با تغییر زاویه بین صفحه مقوایی و آینه پرتو بازتابش را هم روی مقوا بیندازید. یعنی پرتو بازتابش هم بر صفحه مماس شود. سپس زاویه بین مقدار آینه را اندازه بگیرید. این کار را برای حالتهای مختلفی از جمله منابع مختلف و بازتابندههای مختلف انجام دهید. مقدار این زاویه چگونه تغییر میکند؟
در مرحله بعدی ، از وسط ورقه مقوایی خطی عمود بر یکی از لبههای آن رسم کنید. سپس مانند حالت قبل ورقه مقوایی را در وضع عمود بر سطح بازتابنده طوری قرار دهید که انتهای خط رسم شده بر نقطهای قرار گیرد که شعاع نور در آن به سطح بازتاننده میخورد. حال زاویه بین خط عمود روی مقدار و آینه را اندازه بگیرید و این کار را همانند حالت اول برای شرایط مختلف امتحان کنید. چه چیز نتیجه میشود؟
مسلما در حالت اول مشاهده کردید که برای آنکه پرتو تابش و بازتابش هر دو روی صفحه مقوایی بیفتد همواره باید ورقه مقوایی بر سطح بازتاباننده عمود باشد و همینطور در حالت دوم چون خط عمود روی مقواست، سپس در همان صفحهای است که دو شعاع نور قرار دارند و بر صفحه بازتاباننده نیز عمود است. این مشاهدات قانون اول بازتاب آینهای را بدست میدهد. وقتی نور از یک سطح تخت آینهای بازتابیده میشود، پرتو فرودی ، پرتو بازتابیده و خط عمود بر سطح در نقطه تماس همگی در یک صفحه واقعند.
در همان آزمایش شماره 2 صفحه مقوایی را مورب کنید، بطوری که خط عمود بر صفحه شما منطبق باشد و فصل مشترک صفحه آینه ˚90 باشد. سپس زاویه پرتو تابش نسبت به خط عمود روی صفحه مقوایی را تغییر دهید و در هر حالت زاویه بازتابش را از روی صفحه مقوایی و آن را با زایه تابش مقایسه کنید. چه نتیجه میگیرید؟
مشاهده خواهید کرد زاویه بین پرتو بازتابیده و خط عمود که زاویه بازتاب نامیده میشود، با زاویه بین فرودی و خط عمود ، به نام زاویه فرود ، مساوی است و طی آن قانون دوم بازتاب آینهای بدست میآید: زاویه بازتاب برابر با زاویه فرود است.
آزمایش شماره 4: شکست نور
ابتدا پرتو نوری را توسط یک منبع نوری به سطح جدا کننده هوا و آب بتابانید، یک نقاله پلاستیکی سفید را چنان قرار دهید که نیمی از آن در هوا و نیمه دیگر داخل آب باشد، سعی کنید پرتو فرودی و پرتو شکست یعنی پرتوی که از سطح جدا کننده دو محیط عبور کرده و وارد محیط دوم شده را روی نقاله بیندازید سپس زاویه بین نقاله و مرز مشترک دو محیط را اندازه بگیرید این کار را برای مواد مختلف بجای آب انجام دهید، زاویه بین نقاله و مرز مشترک دو سطح چگونه تغییر میکند؟
مشاهده خواهید کرد که در همه حالتها نتیجه یکسانی بدست میآید. در همه حالتها این زاویه ˚90 اندازه گیری میشود که در قانون اول شکست خلاصه شده است: پرتو فرودی ، پرتو شکست و خط عمود بر سطح همگی در یک صفحه قرار دارند.
همانند آزمایش 4 ، نقاله پلاستیکی را طوری قرار دهید که نیمی از آن داخل آب و نیم دیگر در هوا باشد و نقاله پلاستیکی را عمود بر مرز مشترک دو محیط قرار دهید. پس پرتو فرودی را تحت زوایای مختلف بتابانید و در هر مورد زاویه شکست را از روی نقاله بخوانید. سپس نمودار زاویه شکست را بر حسب زاویه فرود رسم کنید. نمودار زاویه فرودی بر حسب زاویه بازتابش رسم کنید. همین آزمایشها را برای مواد مختلف به عنوان محیط دوم امتحان کنید. مشاهدات شما چگونه است؟
با قرار دادن یک خط کش راست روی قسمتهایی از منحنیها ، شیشه و آب متقاعد میشویم که برای زوایای فرد بین صفر تا ˚30 یا ˚40 هر دو منحنی تقریبا راست هستند و هر دو از مبدأ دستگاه مختصات میگذرند. بنابراین ، در این گستره زاویه شکست با زاویه فرود متناسب است. اگر زاویه r زاویه شکست و i زاویه تابش باشد میتوان نوشت: ثابت×i = r. همینطور مشاهده میشود که مقدار ثابت به جنس مادهای بستگی دارد که نور از هوا به آن وارد میشود. این تقریب برای زوایای کوچک متغیر است، ولی برای تمام زوایای صادق نیست.
یافتن یک معادله ریاضی که با منحنی تجربی جور باشد، ممکن است کار سادهای نباشد. سابقه این کار به هزاران سال پیش به بطلیموس برمیگردد. در قرن هفدهم اسنل ریاضیدان هلندی این قانون فرمول بندی شد. برای ایجاد ارتباط مناسب بین دو زاویه فرود و شکست اولا باید توابعی داشته باشیم که نسبت دو تابع برای زوایای شکست و فرود برابر نسبت ضریب شکست دو محیط و مقدار ثابتی باشد. از طرفی برگشت پذیری مسیر نور مستلزم این است که هر دو زاویه تابع یکسانی داشته باشند.
به علاوه ، برای زوایای کوچک نسبت توابع باید به نسبت خود زوایا تبدیل شود. تابعی که در این شرایط صدق کند SinӨ است. در واقع ، این تابع که به قانون اسنل معروف است. با استفاده از نتایج آزمایش 5 مشاهده میکنید که پشت سینوس زوایای فرود و شکست برای تمام زوایا مقدار ثابتی است.
کلمات کلیدی: اپتیک
|
دیدکلی
وقتی جسم کدری میان یک پرده و یک چشمه نقطهای نور قرار گیرد، سایهای پیچیده متشکل از نواحی روشن و تاریک ایجاد میشود. این اثر به آسانی قابل روئیت است، اما یک چشمه نسبتا قوی ضروری است. لامپی با شدت زیاد که از یک سوراخ کوچک میدرخشد، این کار را به خوبی انجام میدهد. اگر به نقش سایه حاصل از یک قلم ، تحت روشنایی یک چشمه نقطهای نگاه کنید یک ناحیه روشن غیر معمولی در کناره خواهید دید.
حتی نواری با روشنایی ضعیف در وسط این سایه تشکیل میشود. به سایهای که توسط دستتان در امتداد نور خورشید ایجاد میشود، نگاهی دقیق بیندازید. معمولا پراش مربوط به موانع شفاف مورد نظر قرار نمیگیرد. هر چند اگر در شب رانندگی کرده باشید، در حالیکه چند قطره باران بر روی شیشه عینکتان نشسته باشد، فریزهای روشن و تاریک را مشاهده خواهید کرد.
اولین مطالعه تفضیلی منتشر شده درباره انحراف نور از مسیر مستقیم توسط فرانسسیکو گریمالدی در قرن هفدهم انجام گرفت و آن را پراشه نامید.
فرض کنید که یک مانع کدر حاوی یک روزنه کوچک داریم که امواج تخت حاصل از یک چشمه نقطهای شکل خیلی دور (S) ، آن را روشن کرده است. صفحه مشاهده ، پردهای است موازات با مانع کدر ، دورتر بودن صفحه مشاهده به آرامی باعث تغییر پیوسته در فریزها میشود. در فاصله خیلی دور از مانع نقش تصویر شده بطور قابل ملاحظهای پخش خواهد شد. بطوری که به روزنه واقعی بیشباهت است و یا شباهت اندکی با آن خواهد داشت. از آنجا به بعد حرکت دادن پرده تنها اندازه نقش پراش را تغییر میدهد ولی شکل آن را بدون تغییر میگذارد. این پراش را فرانهوفر یا پراش میدان- دور میگویند.
فرض کنید یک مانع کدر حاوی روزنه کوچک که اموج تخت حاصل از یک چشمه نقطهای شکل خیلی دور (S) ، آن را روشن کرده است. در این حالت صفحه مشاهده پردهای موازی با مانع است. در این شرایط یک تصویر از روزنه بر روی پرده میافتد، که علیرغم وجود برخی فریزهای جزئی در اطراف محیط آن ، به روشنی قابل تشخیص است. بتدریج که صفحه مشاهده از مانع دور میشود، تصویر روزنه گر چه هنوز به راحتی قابل تشخیص است، هرچه شکل مشخصتری به خود میگیرد، و این در حالی است که فریزها نمایانتر میشوند. این پدیده مشاهده شده پراش فرنل یا میدان- نزدیک نامیده میشود.
دو پرده پراشان را مکمل میگویند، هرگاه نواحی شفاف روی یک پرده با نواحی کدر پرده دیگر و بر عکس متناظر باشند. وقتی که دو پرده مکمل روی هم بیافتند، آشکار است که ترکیب آنها کاملا کدر است.
آرایهای تکراری از عناصر پراشان ، نظیر روزنهها یا موانعی که اثر آنها ایجاد تغییرات متناوبی در فاز ، دامنه یا هر دوی آنها در یک موج خروجی است، یک توری پراش نامیده میشود. غالبا توریهای تخت تراشهای ، یا شیارهایی تقریبا مستطیلی چنان سوار میشوند که بردار انتشار فرودی تقریبا بر هر یک از وجوه شیارها عمود باشند.
کلمات کلیدی: اپتیک
|
مقدمه
از بحث امواج میدانیم که موج در محیطهای تغییر شکل پذیر یا کشسان را امواج مکانیکی مینامند. بنابراین اگر خاصیت کشسانی محیطی که موج در آن انتقال مییابد، به گونهای باشد که دقیقا از قانون هوک پیروی نکند، در این صورت تپ یا موج ایجاد شده در انتهای یک ریسمان کشیده ، ممکن است در موقع حرکت در طول ریسمان تغییر شکل بدهد. هرچند هر یک از مولفههای موج بدون تغییر شکل حرکت میکنند، اما در این مورد سرعت هر مولفه به ازای هر فرکانس (یا طول موج) متفاوت خواهد بود. این پدیده ، پاشندگی بوده و محیط مورد نظر را پاشنده میگویند.
نتیجه اینکه شکل تپ میتواند تغییر کند و سرعت تپ ممکن است به مشخصات شکل اولیهاش بستگی داشته باشد. نمونههایی از مواد غیر پاشنده عبارتند از:
امواج مکانیکی منتشر شده در طول یک ریسمان ایدهآل (کاملا انعطاف پذیر) و امواج الکترومغناطیسی (نور) منتشر شده در خلا و نمونههای مربوط به موارد پاشنده ، شامل امواج اقیانوسها و امواج نورانی منتشر شده در یک محیط شفاف مانند شیشه است.
بیشتر باریکههای نور از برهمنهش امواج با طول موجهایی بدست آمدهاند که در تمام گستره طیف مرئی وجود دارند. سرعت نور در خلا برای همه طول موجها یکی است، اما درون محیط مادی سرعت انتشار برای طول موجهای مختلف متفاوت است. پس ضریب شکست یک ماده به طول موج بستگی دارد. هر محیط ناقل موج که سرعت موج در آن با طول موج تغییر کند، دارای خاصیت پاشندگی است. اندازه ضریب شکست (n) با افزایش طول موج کاهش پیدا میکند، لذا با افزایش فرکانس افزایش مییابد. در درون ماده ، طول موجهای بلندتر ، سرعت انتشار بیشتر و طول موجهای کوتاهتر ، سرعت انتشار کمتری دارند.
فرض کنید پرتویی از نور سفید بر یک منشور میتابد. میدانیم که نور سفید برهمنهشی از همه نورهای مرئی است. بنابراین نور خروجی از منشور به رنگهای مختلف تجزیه میشود. میزان انحراف حاصله توسط منشور با افزایش ضریب شکست و با کاهش طول موج افزایش پیدا میکند. نور بنفش بیشترین و نور سرخ کمترین انحراف را دارند و رنگهای دیگر بین این دو رنگ قرار دارند. وقتی که نور از منشور خارج میشود، به صورت واگرا میباشد. مقدار پاشیدگی به تفاضل ضریب شکست پرتوهای سرخ و بنفش بستگی دارد. بنابراین میتوان گفت که درخشندگی الماس بخشی به دلیل پاشیدگی زیاد و بخشی دیگر به خاطر ضریب شکست زیاد آن است.
در مباحث الکترومغناطیسی در مورد هر محیطی اعم از رسانا یا عایق (دی الکتریک) یک ضریب دی الکتریک k\prime و یک تابع رسانندگی g تعریف میکنند. حال اگر تابش الکترومغناطیسی که با عدد موج مخصوص به خود مشخص میشود، از خلا بر یک محیط بتابد، با استفاده از معادلات ماکسول رابطه بین ضریب شکست محیط و ثابت دی الکتریک و عدد موج را مشخص میکنند که این رابطه را رابطه پاشندگی میگویند.
بنابراین در حالت کلی اگر عدد موج را با k و سرعت زاویهای موج را با ω و ضریب شکست را با n نشان دهیم، رابطه پاشندگی را به صورت بیان میکنند، یعنی ضریب شکست تابعی از مشخصات موج است. به عنوان مثال ، در خلا که برای آن ضریب شکست را برابر یک اختیار میکنند، رابطه پاشندگی به فرم ساده در میآید که در آن C سرعت نور است.
کلمات کلیدی: اپتیک
نور بیشترین سرعت خود رادر خلا دارد که حدودا300000 کیلومتر بر ثانیه می باشد مقدار سرعت نور در محیط مادی غیر خلا کمتر ازمقدارش در خلا است.
با حل معادلات ماکسول و رسیدن به معادله بنیادی موج مقدار سرعت نور بر حسب گذردهی الکتریکی خلا وتراوایی مغناطیسی خلا بر طبق زابطه سرعت امواج الکترومغناطیسی ماکسول داده می شود.
یکی از دقیقترین اندازه گیری های الکتریکی کمیت گذردهی الکتریکی در تراوایی مغناطیسی است که در مؤسسه ملی استاندارد ها در آمریکاه بوسیله رزا (Roza) و درسی(Dorsey) انجام شد.
ایشان ظرفیت خازنی را که ابعاد فیزیکی آن دقیقا معلوم بود را از طریق محاسبه یافت. این ظرفیت در یکای الکتریسیته بدست آمد سپس با استفاده از پل و تستون ، ظرفیت همان خازن را در یکای الکترو مغناطیس یافت نسبت این دو مقدارظرفیت در یکای SI بصورت حاصلضرب گذردهی الکتریکی در تراوایی مغناطیسی داده شد نتیجه این اندازه گیری بسیار دقیق بود.
رومر(Romer) اولین کسی بود که در سال 1676 با مطالعه گرفتگی ماه های بر جیس سرعت نور را اندازه گرفت پژوهشگران متعددی بطور مستقیم
سرعت انتشار نور را اندازه گرفته اند.نتایج این اندازه گیری ها با دخالت خطای آزمایش جواب واحدی را دنبال می کنند .
اینکه نور یک نوع آشفتگی الکترو مغناطیسی است غیر قابل انکاراست دقیق ترین اندازه گیری سرعت نور که آنرا با حرف اختصاری C در خلا نشان می دهند با استفاده از لیزر (Laser)بوده که در سال 1972 بوسیله اوانسون(Evanson) و همکارن او در مؤسسه ملی استاندارد انجام شده و نتیجه آن چنین است: (29979245692 متر بر ثانیه)
بحث کلی بسیار خوبی در مقاله "سرعت نور" نوشته بر گسترند در دایره المعارف فیزیک موجوداست.
جهت دستیابی به اطلاعات بیشتر به مرجع زیر رجوع شود:
Bescancon,R.M,ed,The Encyclopedia of physicsNew York:Reinhold 1966
اندازه گیری سرعت نور به روش های مختلف در زمانهای متفاوت در جدول زیر آمده است.
تاریخ----------------آزمایش کننده----------------روش ---------------------نتیجه(km/s)
1849---------------فیزو (Fizeau)-----------------چرخ دندانه دار--------------- (5000) 31300
1880---------------مایکلسون (Micelson)----------آینه چرخان-------------------(200) 299910
1923 --------------مرسیه (Mercier) ------------موج رادیویی-----------------(30) 299782
1952 ---------------فروم (Froom) ---------------تداخل سنج میکروموجی---------(0.7) 29979.6
1907 --------------رزا و درسی (.R.& D)---------نسبت یکاهای الکتریکی--------(10) 299784
(اعداد داخل پرانتز در نتیجه ، میزان خطای اندازه گیری را نشان می دهد.)
کلمات کلیدی: اپتیک