در طی چند سال اخیر فناورینانو به عنوان جزء مهمی از صنعت غذا تبدیل شده است. شرکتهای مطرح در صنایع غذایی به تحقیق و توسعه در این زمینه پرداختهاند و انتظار میرود اولین موج محصولات در آینده نزدیک به بازار وارد شود. البته این تنها شروع است و یقیناً فناورینانو در این عرصه راهی طولانی در پیش خواهد داشت.
بنابر یک پیش بینی اقتصادی به وسیله تحلیل گران، بازار نانوغذاها از 6.2 میلیارد دلار فعلی به 7 میلیارد دلار در سال آینده و به 4.20 میلیارد دلار در سال 2010 خواهد رسید .
فناورینانو میتواند در خط تولید به منظور ایجاد ریزحسگرها و ماشینهای تشخیص بهکار رود و تولید غذاهای فاقد آلودگی را تضمین کند. این نانوابزارها در تشخیص میکروبهای مضر و تعیین زمان ماندگاری محصول نیز کاربرد دارند و به مدیران در اتخاذ تصمیمات راهبردی مانند انتخاب بهترین روش حمل و نقل و انبار محصولات کمک میکنند. به گفته کامپرز، مدیر برنامه بیو فناورینانو در دانشگاه واخنینگن، استفاده از فناورینانو به منظور تضمین کیفیت فرآوردههای غذایی، یقیناً به نفع مصرفکننده است؛ البته نانوحسگرها و تشخیصدهندههای روبوتیک فعلاً فقط در مراکز تحقیقات بهکار میروند، اما پیشبینی میشود اولین سری این ماشینها در طی 4 سال آینده در محصولات غذایی ظاهر شوند .
در حال حاضر شرکتهای زیادی مانند Nestle، Food،Hershey، Keystone و Unilever مشغول کار روی نانوغذاها هستند.
گزارش شده است Nestle و Unilever امولوسیونهایی از نانوذرات را کشف کردهاند که باعث یکنواختتر شدن بافت غذا شده، و میتوان در تولید محصولاتی مانند بستنی از آنها استفاده کرد. دیگر پروژههای این شرکت، کار روی نانوکپسولهایی حاوی غذاهای غنی شده است که مواد مغذی و آنتی اکسیدانتها را به تدریج به بخشهای خاصی از بدن تحویل میدهند. این فناوری موادغذایی قدیمی را به ذراتی در ابعاد نانو تبدیل میکند که در داخل بدن رها شده و به خوبی جذب میشوند. این فناوری در غذاهای جدید کاربرد زیادی خواهد داشت.
یکی دیگر از شرکتهای پیشگام در توسعه نانوغذاها، شرکت Kraft است که با تأسیس کنسرسیوم نانوتک (Nanotek) در سال 2000 اولین گامهای ورود فناورینانو به صنعت غذا را برداشت. این کنسرسیوم مجموعهای از 15 دانشگاه و آزمایشگاههای تحقیقاتی ملی است و بیشتر در زمینه تهیه انواع غذاهای تعاملی و فرآوردههای نوشیدنی فعالیت میکند که با ذائقه و نیازهای فردی مصرف کننده سازگار باشد و دامنه وسیعی، از نوشیدنیهای تغییر رنگدهنده تا غذاهای جدید سازگار با حساسیت مصرفکننده (یا نیازهای تغذیهای او) را در برمیگیرد. فعالیت دیگر این شرکت، تهیه نانوفیلترهایی است که مولکولها را بیشتر بر اساس شکل و نه بر حسب اندازه غربال میکنند، و این مسئله تفکیک اجزای خاصی از یک فرآوده، حتی در دست مصرف کننده را امکانپذیر میسازد.
از دیگر اهداف این شرکت، کار روی بستهبندیهای هوشمند غذایی است. از نانوحسگرهایی که به رهایش مواد شیمیایی ناشی از فساد غذاها حساس هستند میتوان در بستهبندیهای هوشمند استفاده کرد، تا به محض شروع خراب شدن غذا، رنگ بستهبندی تغییرکرده، به مشتری هشدار میدهد. این سیستم به مراتب دقیقتر و مطمئنتر از فروش با تاریخ مصرف است .
یکی دیگر از شرکتهای فعال در زمینه نانوغذا، NutraLease است که روی فناوری غذاهای غنی شده تحقیق کرده و جهت افزایش رهایش زیستی (Biodelivery) مواد غذایی، از نانوکپسولها استفاده میکند. این فناوری در نوعی روغن آشپزی بهکار برده شده است که از استرولهای گیاهی به منظور کاهش جذب کلسترول و کاهش خطر بیماریهای قلبی استفاده میکند. بر اساس گزارشی این فرآورده باعث کاهش حدود 14درصد ازمیزان کلسترول LDL میشود.
شرکت Oil Fresh از اجزای نانوسرامیکی در تهیه ماهیتابههای رستورانها استفاده میکند که باعث کاهش زمان سرخ کردن و مصرف روغن میشود. استفاده از این فرآورده به رستورانها اجازه میدهد که از روغنهای گیاهی به جای روغنهای هیدروژنه استفاده کنند و در نتیجه میزان چربیهای ترانس کاهش یافته و غذاهای سالمتری به دست میآید.
شرکت دیگری به نام Voridian از ترکیباتImpern نانوکامپوزیت ها در ساخت بطریهای پلاستیکی نوشیدنیها استفاده کرده است. Impern نوعی پلاستیک است که با نانوذرات خاک رس آمیخته و پلاستیکهایی به سختی شیشه ولی محکمتر را به وجود آورده است، که نسبت به شیشه شکنندگی کمتری دارند. لایه نانوذرات بهگونهای طراحی شده که فرار مولکولهای دیاکسیدکربن از نوشیدنی و نفوذ مولکولهای اکسیژن به درون نوشیدنی جلوگیری کرده، در نتیجه باعث حفظ تازگی و افزایش زمان ماندگاری محصول میشود.
یکی دیگر از شرکتهای فعال در این زمینه Nanocor است. این شرکت مهمترین تولیدکننده نانوکامپوزیت های پلاستیکی است. این پلاستیکها ویژگیهای ویژهای از جمله ایجاد مانع بهتر برای جریان اکسیژن و دیاکسیدکربن دارد، که منجر به افزایش زمان نگهداری محصولات نانوکامپوزیت پلاستیک مقاوم میشود. همچنین این پلاستیکها از پخش بو جلوگیری کرده، مانع جذب طعم یا ویتامینهای موجود در غذا به وسیله بستهبندی میشوند. به طور کلی طراحی مولکولی این پلاستیکها بهگونهای است که مقاومت محصولات را در برابر آتش و ثبات ساختار آنها را در برابر حرارت بهبود میبخشد. به عنوان مثال این مواد در سبدهایی برای جوشاندن مواد غذایی و بستهبندیهایی برای استفاده در مایکروویو کاربرد دارد. نانوکامپوزیتهای پلاستیکی در بستهبندی های جدید مواد غذایی نیز قابل استفاده هستند .
از دیگر محصولات کلیدی، حسگرهای بویایی الکترونیکی (بینی الکترونیکی) و هم خانواده جدیدتر آنها حسگرهای چشایی الکترونیکی (زبان الکترونیکی) هستند. این وسایل از زبان و بینی انسان تقلید میکنند با این تفاوت که نسبت به طعمها و بوهای ناچیز حساسیت بیشتری دارند.
بینی الکترونیکی آرایهای از حسگرهای گازی در مقیاس نانو است و سطح بالای نانوذرات اجازه عبور بیشترین گاز ممکن از روی آنها را میدهد. این فناوری به همراه فناوری تشخیص الگویی، امکان ایجاد یک اثر انگشت دیجیتالی از هر بوی خاص را فراهم میکند. این محصولات در آزمایشگاههایی از جمله NASA برای تشخیص مواد شیمیایی در حد ناچیز استفاده شدهاند؛ اما در حال حاضر در صنایع غذایی جهت کنترل بهترین سطح تولید شده غذاها بهکار میروند. این محصولات همچنین در جهت تشخیص آلایندهها و تجزیه کیفی و کلی غذا مؤثر هستند.
در حال حاضر بعضی شرکتها نوعی زبان الکترونیکی را به کار میبرند که شامل آرایهای از حسگرهای مایع (الکترودهای پوشش داده شده با پلیمرهای هادی) به همراه فناوری تشخیص الگویی است که قادر به تشخیص طعمهای ویژه از هم میباشد. از کاربردهای مهم این زبان، آزمون چشایی نوشیدنیها مانند آب میوهها، شیر، قهوه، آب معدنی و نوشابهها و همچنین توانایی چشیدن مواد شمیایی در حد PPT است و هزینه تولید آن در حدود 50 سنت میباشد. یقیناً این زبان نقش حیاتی خود را در مطالعات غذایی پیدا خواهد کرد. حسگر چشایی، در بستهبندی گوشت قادر به تشخیص اولین نشانههای فساد مواد غذایی بوده و با تغییر رنگ، فساد ماده غذایی را هشدار میدهد.
نوع دیگر فناوری حسگرها، نانوبارکدها هستند که به وسیله شرکت Nanoplex Technologies تولید شدهاند. نانوبارکدها مدل مولکولی بارکدهای سنتی است و شامل نانوذرات فلزی میباشند که اثر انگشت شیمیایی قابل شناسایی و خاصی دارند و میتوانند از طریق یک ماشین (احتمالاً یک لامپ UV یا میکروسکوپ نوری) تشخیص داده شوند. این نوع بارکدها میتوانند برای حفاظت مارک و ارزیابی غذاهایی که در حالت عادی نمیشود بارکدهای سنتی را روی آنها چسباند، استفاده شود. آنها همچنین برای تشخیص پاتوژنها در غذا مانند E. coli مورد استفاده قرار میگیرند. در حقیقت تشخیص پاتوژنها از دیگر اهداف اصلی فناورینانو در صنایع غذایی است.
هانگ نیز روی نانو حسگرهای زیستشناسانه کار کرده است. این حسگرها قادرند مقادیر اندک پاتوژنها در غذا را تشخیص دهند. همچنین امکان استفاده از آنها در مراکز نگهداری و حمل و نقل غذا به منظور کنترل دقیق در مقیاس مولکولی وجود دارد. وی همچنین روی غذاهایی که ”عملکردی“ نامیده میشوند کار کرده و نقش مواد مغذی که موجب سلامت و مانع از بیماری میشوند را کشف کرده است.
هانگ میگوید:«بسیاری از غذاها به صورت ذاتی قادر به جلوگیری از بیماریها هستند مثل چای سبز، هسته انگور و زنجبیل؛ اما مسئله این است که مصرف مستقیم این غذاها فایدهای برای بدن نداشته و بدن نیز به سختی آنها را جذب میکند؛ بنابراین به یک سیستم تحویل نیاز داریم که دسترسی زیستی آنها را افزایش دهد.«
او به خصوص به جلوگیری از دیابت و چاقی علاقهمند است و این سؤال را مطرح میکند که چطور میتوان از غذاهایی مانند بستنی و شکلاتهای خوش طعم استفاده کرد به صورتی که موجب چاقی نشوند؟
در جواب باید گفت استفاده از مواد فیبری و کربوهیدراتها به جای چربی میتواند به حل این مسئله کمک کند و برای دیابت نیز باید جایگزینهای بهتری را برای شکر پیدا کرد.
اگر هانگ یا دیگران بتوانند موفق به ایجاد غذاهایی خوش طعم ولی حاوی مواد جایگزین چربی شوند و یا با بهکارگیری نانوذرات مانع از جذب و ذخیرهسازی چربی و کالری بهوسیله بدن گردند، هدف نهایی را در غذا به دست آوردهاند.
هانگ میگوید:»شرکتهای زیادی درباره غذایی که شما را سیر کند ولی تأثیری روی وزن نداشته باشد، تحقیق میکنند ولی به دلیل توافقهای محرمانه هنوز جزئیات فاش نشده است « .
گرچه دسترسی به این فناوری جدید آسان است، اما به دلیل گران بودن محصولات، ورود آن به بازار به این سرعت امکانپذیر نیست. البته این مشکلات قابل حل هستند و به زودی شاهد هجوم فرآوردههای فناورینانو از فرآوردههایی مؤثر برای ایمنی و سلامت گرفته تا غذاهای قابل برنامه ریزی و مطابق با سلیقه افراد، به صنعت غذا خواهیم بودکه نتایج شگفتآوری را در بر خواهند داشت، فقط باید امیدوار باشیم که یک ترس عمومی مانع از موج ابداع نشود همانگونه که برای غذاهای اصلاح شده ژنتیکی این اتفاق افتاد.
جمعبندی:
در طی سه سال گذشته، تأثیر عمیق فناورینانو در صنایع غذایی و بستهبندی به اثبات رسیده است. اکنون بیش از 300 فرآورده نانوغذایی در بازارهای جهانی موجود است. این موفقیت شگفت انگیز، منجر به سرمایهگذاریهای هنگفتی در زمینه R&D در نانوغذا شده است. امروزه فناورینانو یک شایعه پوچ نیست، بلکه حقیقتی لازم الاجرا در صنایع غذایی است و هر شرکتی که بخواهد در صنایع غذایی پیشگام باشد، باید کار با فناورینانو را سریعاً شروع کند .
در حال حاضر بیش از 400 شرکت در سراسر دنیا در امر تحقیق، توسعه و تولید نانوغذاها فعالیت میکنندکه در صدر آنها، ایالات متحده امریکا، ژاپن و چین قرار دارند. تا سال 2010، آسیا با 50 درصد جمعیت دنیا، به بزرگترین بازار نانوغذا تبدیل میشود و چین نیز در موقعیت پیشگام قرار خواهد داشت .
پیشرفت بیشتر در رمزگشایی DNA و آنالیز آن، صنایع را قادر به پیشبینی، کنترل و بهبود محصولات کشاورزی میکند. تلفیق این فناوری با فناوری دستکاری مولکولها و اتمهای غذا، روش قدرتمندی را در اختیار صنایع غذایی میگذارد تا غذاهایی با قابلیت بسیار بیشتر و هزینهای کمتر را طراحی کنند.
منبع : www.nanoarticle.com
کلمات کلیدی: نانو تکنولوژی
فیزیک دانان انگلیسی و آمریکایی سیلیکون تازهای خلق کردند که شمار پروتونهای هسته آن "عدد جادویی" تازهای در میان اعداد اتمی به شمار میآید .
هستههای اتمهای مختلف فقط در صورتی پایدار باقی میمانند که شمار ریز-ذرههایی که در درون آنها جای دارند، یعنی شمار پروتونها و نوترونهای آنها، برابر اعداد معینی باشد.
این اعداد که به عددهای جادویی شهرت دارند نشاندهنده این نکته است که در درون هسته هیچ ریز-ذره آزادی موجود نیست که در ترازهای انرژی خاص خود به تنهایی سرگرم گردش باشد و همه ریزذرهها در ارتباط با یکدیگر سطوح انرژی درون هسته را پر کردهاند.
فیزیکدانان از مدتها پیش به شماری از این اعداد جادویی دست یافته بودند. این اعداد عبارتند از 2 ، 8 ، 20 ، 28 ، 50 ، 82 و 128 برخی از عناصر موجود در طبیعت یا عناصر مصنوعی این خاصیت را دارند که هسته آنها با این اعداد جادویی مطابق است.
یعنی شمار پروتونها یا نوترونهای آنها مساوی با یکی از این اعداد است. این گونه عناصر در مقایسه با عناصر دیگر از پایداری بیشتری برخوردارند. در برخی از عناصر هم شمار پروتونها و هم شمار نوترونها مساوی با اعداد جادویی است و این گونه عناصر از پایداری مضاعف و دوگانه برخوردارند.
با این حال فیزیک دانان به این نکته نیز توجه داشتهاند که سلسله اعداد جادویی که تاکنون کشف شدهاند کامل نیست و اعداد جادویی دیگری نیز موجودند که میتوان آنها را به این سلسله اضافه کرد.
در این هفته یک گروه مشترک از فیزیکدانان انگلیسی و آمریکایی در مقالهای که در نشریه علمی "نیچر" به چاپ رسید گزارش دادند موفق به تولید یک سیلیکون رادیو اکتیو شدهاند که هسته آن به طور مضاعف پایدار است و در عین حال شمار پروتونهای آن یک عدد جادویی تازه را ارایه میدهد.
این پروتون رادیواکتیو که پروتون 42 نام دارد 28 نوترون و 14 پروتون دارد. به این ترتیب عدد 14 عدد جادویی تازهای است که به سلسله اعداد جادویی اضافه شده است.
به گفته "جف تاستوین" فیزیک دان هستهای از دانشگاه ساری که یکی از اعضای تیم مشترک انگلیسی- آمریکایی است بین ترازهای انرژی 8 و 20 برخی زیرترازها وجود دارند که به علت نزدیکی بیش از حد به یکدیگر معمولا به عنوان تراز مستقل به حساب آورده نمیشوند و بنابراین انتظار نمیرود در میان آنها به یک عدد جادویی دست یافته شود.
به این اعتبار سیلیکون معمولی که 14 پروتون و 14 نوترون دارد عنصری دارای اعداد جادویی تلقی نمیشود. اما هسته عناصر میتوانند شمار بیشتری از ریز-ذرات اتمی را در خود جای دهند و این امر موجب میشود در موقعیت نسبی ترازهای انرژی درون هسته تغییر ایجاد شود.
تاستوین به اتفاق "پل کاتل" از دانشگاه فلوریدا و شمار دیگری از فیزیک دانان به بررسی این فرضیه پرداختند که اگر تعداد بیشتری نوترون به سیلیکون معمولی اضافه شود، این امر موجب تغییر در ترازهای انرژی داخل هسته این عنصر شده و باعث میشود عدد 14 به یک عدد جادویی تبدیل شود.
این محققان به منظور آزمودن فرضیه خود یک پرتو با انرژی بالا از جنس گوگرد 44 را به عنصر برلیوم تاباندند و به این ترتیب اتمهای گوگرد را وادار کردند تا دو پروتون خود را در اثر برخورد از دست بدهد و به سیلیکون 42 تبدیل شود.
این گروه آنگاه نتایج حاصل از آزمایش را با نتایج محاسباتی مقایسه کردند که با استفاده از نظریه مکانیک کوانتومی تنظیم شده بود. میان نتایج آزمایشی و این الگوی نظری انطباق کامل مشاهده شد.
اهمیت تحقیق تازه در این نکته نهفته است که با استفاده از آن میتوان واکنشهای هستهای را که در ستارههای غول پیکر و ابرنواخترها در هنگام انفجار اتفاق میافتد مورد بررسی قرار داد.
در هنگام انفجار این اجرام بسیار بزرگ مقادیر زیادی نوترون آزاد میشود که در برخورد با اتمها، عناصری نظیر سیلیکون 42 تولید میکنند که از عمر کوتاهی برخوردارند.
به اعتقاد فیزیکدانان درک نحوه عمل این هستههای پر از نوترون میتواند به شناخت بهتری از چگونگی تطور و شکلگیری کیهان منجر شود.
کلمات کلیدی: کوانتوم
فیوز چیست ؟
کلمات کلیدی: مغناطیس
یکی از عجیب ترین کشفیات انسان دسترسی به فضا است که پیچیدگی و مشکلات خاص خود را دارد. راه یابی به فضا پیچیده است، چرا که باید با بسیاری از مشکلات روبرو شد. مثلا:
- وجود خلا در فضا
- مشکلات گرما و حرارت
- مشکل ورود مجدد به زمین
- مکانیک مدارها
- ذرات و باقی مانده های فضا
- تابش های کیهانی و خورشیدی
- طراحی امکانات برای ثابت نگه داشتن اشیا در بی وزنی
ولی بزرگترین مشکل ایجاد انرژی لازم برای بالا بردن فضاپیما از زمین است که برای درک این موضوع باید به بررسی طرز کار موتورهای موشک پرداخت.
در یک دیدگاه ساده، می توان موتورهای موشک را به آسانی و با هزینه ای نسبتا کم طراحی کرد و حتی آن را به پرواز درآورد اما اگر بخواهیم مسئله را در سطح کلان بررسی کنیم با مشکلات و پیچیدگی های بسیاری مواجه هستیم و این موتورهای موشک (و به خصوص سیستم سوخت آن ها) آنقدر پیچیده است که تا به حال تنها سه کشور توانسته اند با استفاده از این فناوری انسان را در مدار زمین قرار دهند.
در این مقاله ما موتورهای موشک های فضایی را مورد بررسی قرار می دهیم تا با طرز کار و پیچیدگی های آن ها آشنا شویم.
نکات پایه ای:
عموما وقتی کسی درباره موتورها فکر می کند، خود به خود مطالبی درباره چرخش برایش تداعی می شود.برای مثال حرکت متناوب پیستون در موتور بنزینی که انرژی چرخشی برای به حرکت در آوردن چرخ ها را تولید می کند. و یا موتور الکتریکی که با تولید میدان الکتریکی که با تولید میدان مغناطیسی نیروی چرخشی برای پنکه یا سی دی رام تولید می کنند. موتور بخار هم به طور مشابه کار می کنند.
ولی موتور موشک از لحاظ ساختار متفاوت است. موتور موشک ها موتورهای واکنشی هستند.اساس کار موتور موشک برپایه ی قانون معروف نیوتون است که می گوید: "برای هر کنش واکنشی وجود دارد به مقدار مساوی ولی درجهت مخالف آن". موتور موشک نیز جرم را در یک جهت پرتاب می کند و از واکنش آن در جهت مخالف سود می برد.
البته تصور این اصل (پرتاب جرم و سود بردن از واکنش) ممکن است در ابتدا کمی عجیب به نظر بیاید، چرا که در عمل بسیار متفاوت می نمایاند. انفجار، صدا و فشار چیزهایی است که در ظاهر باعث حرکت موشک می شود و نه "پرتاب جرم".
بگذارید تا با بیان چند مثال تصویری بهتر از واقعیت را روشن کنم:
● اگر تا به حال با اسلحه ی(به خصوص سایز بزرگ آن) shotgun شلیک کرده باشید، متوجه می شوید که ضربه ی بسیار قوی ای، با نیروی بسیار زیاد به شانه شما وارد می کند.
یک اسلحه مقدار 1 انس فلز را به یک جهت و با سرعت 700 مایل در ساعت شلیک می کند و در واکنش شما را به عقب حرکت می دهد.
● اگر تا به حال شیر آتش نشانی را دیده باشید، متوجه می شوید که برای نگه داشتن آن باید نیروی بسیار زیادی را صرف کنید (اگر دقت کرده باشید گاهی 2 یا 3 آتش نشان یک شیر را نگه می دارند) که در این جا شیر آتش نشانی مثل موتور موشک عمل می کند.
شیر آتش نشانی، آب را در یک جهت پرتاب میکند و آتش نشان ها از نیرو و وزن خود استفاده می کنند تا در برابر واکنش آن مقاومت کنند. اگر آن ها اجازه بدهند تا شیر رها شود، شیر به این طرف و آن طرف پرتاب می شود.
حال اگر آتش نشان ها روی یک اسکیت برد ایستاده باشند شیر آتش فشانی آن ها را با سرعت زیادی به عقب می راند.
● اگر یک بادکنک را باد کنید و آن را رها کنید، بادکنک به پرواز در می آید، تا وقتی که هوای داخل آن به طور کامل خالی شود. پس می توان گفت که شما یکم موتور موشک ساخته اید. در این جا چیزی که به بیرون پرتاب می شود مولکول های هوای درون بادکنک هستند.
بسیاری از مردم فکر می کنند که مولکول های هوا اهمیتی ندارند، در حالی که اینطور نیست. هنگامی که شما به آن ها اجازه می دهید تا از دریچه بادکنک به بیرون پرتاب شوند، بر اثر واکنش به وجود آمده بادکنک به جهت مخالف پرتاب می شود.
در ادامه برای درک بهتر موضوع، به مثالی دقیق تر اشاره می کنم:
● سناریوی توپ بیسبال در فضا:
شرایط زیر را تصور کنید،
مثلا شما لباس فضانوردان را پوشیده اید و در فضا در کنار فضاپیما معلق مانده اید و چندین توپ بیسبال در دست دارید. حال اگر شما توپ بیسبال را پرتاب کنید، واکنش آن بدن شما را به جهت مخالف توپ حرکت می دهد.
سرعت شما پس از پرتاب توپ به وزن توپ و شتاب وارده بستگی دارد. همانطور که می دانیم حاصلضرب جرم در شتاب برابر نیرو است، یعنی:
F=m.a
همچنین میدانیم که هر نیرویی که شما به توپ وارد کنید، توپ نیز نیرویی مساوی ولی در جهت مخالف به بدن شما وارد میکند که همان واکنش است. پس می توان گفت:
m.a=m.a
حال فرض می کنیم که توپ بیسبال 1 کیلو گرم وزن داشته باشد و وزن شما و لباس فضایی هم 100 کیلوگرم باشد. پس با این حساب اگر شما توپ بیسبال را با سرعت 21 متر در ساعت پرتاب کنید. یعنی شما با دست خود به یک توپ بیسبال 1 کیلو گرمی، شتابی وارد کرده اید که سرعت 21 متر در ساعت گرفته است. واکنش آن روی بدن شما تاثیر می گذارد، ولی وزن بدن شما 100 برابر توپ بیسبال است. پس بدن شما با 100/1 سرعت توپ بیسبال (یا 0.21 متر بر ساعت) به عقب حرکت می کند.
حال اگر شما می خواهید از توپ بیسبال خود قدرت بیش تری بگیرید، شما دو انتخاب دارید: افزایش جرم یا افزایش شتاب وارده
شما می توانید یا یک توپ سنگین تر پرتاب کنید و یا اینکه شما می توانید توپ بیسبال را سریع تر پرتاب کنید (شتاب آن را افزایش دهید)، و این دو تنها کارهایی است که می توانید انجام دهید.
عملیات سوختن به سوخت شتاب می دهد تا از دهانه خروجی موشک با سرعت زیاد بیرون بیاید.
وقتی سوخت جامد یا مایع می سوزد و به گاز تبدیل می شود، جرم آن تغییر نمی کند بلکه تغییر در حجم آن است. یعنی اگر شما مقدار یک کیلو سوخت مایع موشک را بسوزانید مقدار یک کیلو جرم با حجمی بیشتر، از دهانه خروجی موشک با دمای بالا و سرعت زیاد خارج می شود. عملیات سوختن، جرم را شتاب می دهد.
بیایید تا بیش تر درباره ی نیروی پرتاب بدانیم:
نیروی پرتاب:
قدرت موتور یک موشک را نیروی پرتاب آن می گویند. نیروی پرتاب در آمریکا به صورت
(پوند) ponds of thrust
و در سیستم متریک با واحد نیوتون شناخته شده است (هر 4.45 نیوتون نیروی پرتاب برابر است با 1 پوند نیروی پرتاب).
هر یک پوند نیروی پرتاب (4.45 نیوتون) مقدار نیروی است که می تواند یک شی 1 پوندی (453.59 گرم) را در حالت ساکن مخالف نیروی جاذبه زمین نگه دارد.
بنابر این در روی زمین شتاب جاذبه 21 متر در ساعت در ثانیه (32 فوت در ثانیه در ثانیه) است
کلمات کلیدی: ترمو دینامیک
اسکلت یکی از سیستمهای مهم انسان است که سبب حفظ وضعیت ایستاده و استوار بدن در برابر نیروی جاذبه میشود. بهطور طبیعی اسکلت انسان در محیط جاذبه 1 جی زمین رشد و نمو میکند و ساختار استخوانی آن به شکلی طراحی شده است که در مقابل نیروهای وارد بر خود مقاومت کند. لایه خارجی استخوان را پریوست (در مقابل لایه داخلی یا آندوست) گویند. بافت استخوانی محیطی بهشکل تیغههای استخوانی در زیر پریوست قرار دارد. در لایههای زیرین، مجاری استخوانی هممرکز (نظیر تنه درخت) در اطراف یک منبع خونی قرار میگیرد و سیستمهای هاورس (استئون) را میسازد. بافت استخوانی از دو قسمت سخت قشری در خارج، و مغز استخوان در داخل تشکیل شده است. قسمتی از استخوان که در مجاورت مغز استخوان قرار دارد، استخوان اسفنجی (ترابکولار) نام دارد. استخوان قشری ، در حدود 80 درصد استخوانبندی افراد بزرگسال را تشکیل میدهد و اکثراً در تنه استخوآنهای دراز وجود دارد. استخوان اسفنجی بهصورت تیغههای موازی میکروسکوپی آرایش مییابد و بیشتر در تنه مهرهها، دندهها، لگن و انتهای استخوآنهای دراز وجود دارد. ترتیب قرارگیری بافت اسفنجی و متراکم، استحکام مناسب را برای تحرک فراهم میسازد. قسمت اسفنجی استخوان وزن بدن را متحمل میشود و آن را در برابر شکستگی محفوظ میکند. بافت استخوانی دائماً در حال بازسازی است و کلسیم مورد نیاز بدن بهطور متناوب از ذخایر اسکلتی آزاد میشود.
فضانوردانی که بیتحرکی طولانیمدت را تجربه میکنند، مانند بیماران بستری، قطع نخاع، فلج اندامهای تحتانی، و کسانی که اندامهایشان مدتها در گچ میماند، بخش زیادی از توده استخوانی، قدرت استخوانی، و عضلانی خود را از دست میدهند. مطالعات مختلف بر روی فضانوردان نشان میدهد که از دست رفتن توده استخوانی در مأموریتهای فضایی به طور متوسط، حدود 1 تا 2 درصد در ماه و از دست دادن کلسیم در فضانوردان تقریباً 10 برابر میزان از دست دادن کلسیم در بدن زنان در اوایل یائسگی است (بیشترین میزان ازبین رفتن توده استخوانی انسان در روی زمین). کاهش توده استخوان باعث کاهش قدرت استخوانی و افزایش خطر شکستگی میشود که یکی از مشکلات سلامتی فعلی فضانوردان است و سبب اختلال در کارکرد آنها در مأموریتهای فضایی میشود. پوکی استخوان در فضانوردان یکی از بزرگترین موانع مأموریتهای طولانیمدت مثل سفر به مریخ است. آموختههای ما درباره پوکیاستخوان در فضا موجب خواهد شد تا این معضل را، که بیماری شایع و ناتوانکنندهای در کره زمین است، بهتر بشناسیم. اخیراً دانشمندان متوجه شدهاند که اشعه درمانی در بیماران مبتلا به سرطان، خطر شکستگی خودبهخودی استخوان را افزایش میدهد و این واقعیت افق جدیدی از تحقیقات برای محققان است. بتمن یکی از دانشمندان ناسا، که در حال حاضر بر روی پوکیاستخوان کار میکند، میگوید: "بروز شکستگی استخوان در زنان یائسهای که به علت سرطان گردن رحم و روده بزرگ تحت درمان با اشعه (رادیوتراپی) قرار میگیرند 60 درصد و در بیماران مبتلا به سرطان مقعد به میزان 200 درصد افزایش مییابد". با توجه به آنکه کاهش توده استخوانی در فضانوردان و مواجه آنها با تشعشعات کیهانی در مأموریتهای فضایی 30 ماهه به مریخ، امری اجتنابناپذیر است باید شرایطی مهیا کرد تا بتوان مسافران را در برابر آن محافظت نمود.
بتمن در جولای 2006، 35 موش ماده را در معرض یک مواجهه (تک دُز) اشعه به شدت 2گری قرار داد. البته این مقدار تقریباً معادل شدت اشعهای است که برای فرد مبتلا به سرطان استفاده میشود. وی موشها را به 4 گروه تقسیم کرد و اثر اشعههای مختلف گاما (امواج الکترومغناطیسی با طول موج کوتاه و انرژی بالا که به وسیله مواد رادیواکتیو تابیده میشود)، پروتون (از اجزای اتم با بار مثبت و اندازه حدوداً 1836 برابر بزرگتر از الکترون)، کربن و یونیزه (اشعه با قدرت بالا با انرژی کافی برای خارجکردن الکترون از مدار حرکتی و در نتیجه باردارکردن هسته) را روی آنها بررسی کرد. سپس قسمت ابتدایی استخوان بزرگ ساق پا (تیبیا) و استخوان ران (فمور) را به وسیله سیتیاسکن بررسی کرد. طبق نتایج بهدست آمده، اشعه کربن باعث شد تا توده استخوان اسفنجی 39 درصد (بیشترین کاهش) کاهش یابد. اشعههای پروتون، یونیزه و گاما به ترتیب 35، 34 و 29 درصد توده استخوان اسفنجی را کاهش دادند. میزان کاهش اتصالات متحملکننده وزن در استخوان اسفنجی در بین چهار گروه، حدود 46 تا 64 درصد متغیر بود. شایان ذکر است که قطع اتصالات استخوانی برگشتپذیر نیست و با درمانهای جبرانی بهبود نمییابد. تکتک اشعههای؛ گاما، پروتون، کربن و یونیزان در این مطالعه نسبت به مجموع این اشعهها (پروتون و یونهای سنگین یا اشعههای یونیزان) تخریب کمتری داشت. طبق اظهارات بتمن در میزانهای بسیار پایین اشعه هم، که انتظار کاهش توده استخوانی نمیرفت، این معضل مشاهده شد. براساس مطالعه بتمن مشخص شده است که اشعه بر روی قسمت قشری و سخت استخوان اثر محسوسی ندارد و فقط ناحیه اسفنجی را تحت تأثیر قرار میدهد. براساس نتایج این مطالعه، تشعشعات فضایی موجب تشدید کاهش توده استخوانی و وخیمتر شدن اثرات زیانآور بیوزنی بر روی استخوان میشود.
کلمات کلیدی: اختر فیزیک