سفارش تبلیغ
صبا ویژن
نادان را نبینى جز که کارى را از اندازه فراتر کشاند ، و یا بدانجا که باید نرساند . [نهج البلاغه]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

تاریخچه
مورد جالب توجهی از واکنش زنجیری شکافت در طبیعت در معدن اکلو در گابون (واقع در قاره آفریقا) دیده شده است. در سال 1972 ، دانشمندان فرانسوی نمونه‌های معدن اورانیوم را آنالیز کردند. معمولا میزان ایزوتوپ 235U در کل فراوانی اورانیوم برابر 0.7202 درصد است. با وجود این در بعضی از نمونه‌های اکلو ، فراوانی 235U تنها 0.7171 درصد یافت شد. دانشمندان نظر دادند که شاید تهی شدن 235U در نتیجه راکتور شکافت فسیلی بوده که چند میلیون سال پیش عمل کرده است.
شکافت خود به خودی اورانیوم
سن صخره حاوی کانی اورانیوم حدود 1.74X109 سال تعیین شده بود. در صخره‌ای با این سن ، مقدار اولیه 235U تقریبا 3 درصد کل اورانیوم موجود بوده است (نیم عمر 235U برابر 7.04X108 سال است). این مقدار معادل غنای ایزوتوپی اورانیوم بکار رفته در یک راکتور قدرت پیشرفته است. برای رسیدن به جرم کافی جهت ادامه واکنش زنجیری لازم بود که کانی تقریبا معدن حاوی 20 درصد اورانیوم باشد. نمونه‌هایی در جرم اکلو پیدا شده‌اند که دارای 20 تا 60 درصد اورانیوم بوده‌اند.

شکافت خودبه خودی 235U یا نوترونهای اشعه کیهانی می‌توانست نوترونهای پرتابه لازم برای شروع شکافت القایی نوترون 235U را فراهم نماید. 235U احتمال بیشتری از 235U جهت شکافت القایی نوترون دارد. به همین دلیل است که ایزوتوپ 235U بوسیله دیفیوژن گاز یا فرآیندهای دیگر غنی سازی می‌گردد تا در راکتورهای هسته‌ای و بمبهای هسته‌ای قدیمی مورد استفاده قرار گیرد. شکافت 235U چندین نوترون اضافی برای ادامه یک واکنش هسته‌ای زنجیری از طریق القای بیش از یک فرآیند شکافت ثانویه به ازای هر فرآیند شکافت اولیه یا مادر نمود.
واکنشهای زنجیری و راکتورها
شرایط دیگری نیز باید برای انجام واکنش زنجیری موجود باشند. نوترونهایی که موجب شکافت می‌شوند باید تا حد انرژیهای حرارتی حدود انرژی مولکولهای گاز (در دمای اتاق معادل Emean ? 0.04 ev) کند شوند. در راکتورهای پیشرفته آب به عنوان کند کننده متداول برای کاهش انرژیهای نوترونهای شکافت بوسیله واکنشهای برخوردهای چندگانه با اتمهای هیدروژن آب بکار می‌رود. خاک اکلو از نوعی رس و حاوی 5% آب است. این مقدار تقریبا معادل نسبت اورانیوم به آبی است که در راکتورهای مدرن بکار می‌رود.

همچنین بعضی از عناصر دارای احتمال بالای جذب نوترون بوده و لذا واکنش زنجیری را متوقف می‌کنند. این عناصر مانند V به مقدار بسیار کمی در خاک اکلو یافت شدند. عناصر دیگر با احتمال بالای جذب نوترون مانند B ، Nb و Gd به مقدار فوق العاده ناچیز در اکلو وجود دارد. مقدار جزئی از این عناصر که در ابتدا در خاک بوده است، احتمالا در عملیات ابتدائی راکتور سوخته و از بین رفته است. در کنار تهی شدن 235U ، عدم حضور سمومی مانند V و وجود مقادیر جزئی B ، Nd و Gd شواهد آزمایشی دیگری هستند که نشان می‌دهند در اکلو یک راکتور هسته‌ای طبیعی عمل کرده است.
فراوانی عناصر و فرآیند شکافت
فراوانی بالای غیر عادی از ایزوتوپهای نوکلوئیدهایی که معمولا از فرآیندهای شکافت تولید می‌شوند، ملاحظه گردید. در میان اینها ایزوتوپهایی از گازهای به دام افتاده Kr ، Xe بودند که به مقدار زیاد از شکافت 235U بوجود آمده بودند. به دلیل انجام واکنشهای رادیولیز حاصل از اشعه گاما و حرارت ، ترکیبات آلی فرار در صخره‌های این ناحیه وجود نداشت.

صخره‌های محلی نشان دهنده علائمی بودند که نشان می‌داد به شدت حرارت دیده‌اند، ولی نشانی از آتشفشان وجود نداشت. بالاخره ، نسبتهای ایزوتوپی غیر معمولی برای عناصر خاص مانند Nd که دارای ایزوتوپهای با تواناییهای مختلف برای جذب نوترون می‌باشد، وجود داشت. این ایزوتوپها که دارای احتمال بالای جذب نوترون بوده و نسبت به دیگر ایزوتوپها تهی شده‌اند، نشان دهنده حضور یک شار بالای نوترون بودند.
شکافت طبیعی در مکانهای دیگر
منطقه اکلو مورد توجه دانشمندان محیط زیست بوده است، چرا که برای مسائل دفع پسماندهای رادیواکتیو دارای اهمیت خاصی است. مکانهای دیگر راکتورهای طبیعی شکافت در حال بررسی و جستجو هستند، اما در حال حاضر اکلو تنها راکتور هسته‌ای فسیلی شناخته شده می‌باشد.


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 86/10/6:: 1:5 عصر     |     () نظر

طبق فرضیه تازه ای مهم ترین معماهای فیزیک در دهه گذشته، یعنی جرم نوترینوها و آهنگ فزاینده انبساط جهان به ذرات زیر اتمی ای به نام اکسلرون مربوط می شود. شاید بتوان دو دستاورد بزرگ فیزیک در دهه ی گذشته را مربوط به کیهان شناسی دانست، یکی اینکه نوترینوها (ذرات زیراتمی بسیار کوچک) جرم ناچیزی دارند که البته هنوز اندازه گیری نشده است و دیگری اینکه سرعت انبساط عالم در حال حاضر در حال افزایش است. سه فیزیکدان در دانشگاه واشنگتن معتقدند که این دو کشف هر دو به گونه ای به ناشناخته ترین پدیده ی کنونی در عالم، یعنی انرژی تاریک مرتبط است - ما هنوز به درستی آن را نمی شناسیم، تنها می دانیم عاملی است که بر ضد گرانش، سبب سرعت بخشیدن به انبساط عالم می شود- آنها معتقدند همه چیز زیر سر ذره زیراتمی دیگری است که تاکنون مورد توجه قرار نگرفته است و آن را " اکسلرون (Acceleron)" (شتابگر) نامیده اند. انرژی تاریک در عالم اولیه چندان قابل توحه نبوده است اما در حال حاضر 70درصد عالم را اشغال کرده است. شناخت انرژی تاریک به ما کمک می کند تا بدانیم چرا در زمان دوری در آینده عالم آن چنان وسعت پیدا می کند که دیگر هیچ کهکشانی در آسمان شب دیده نشود و آیا این انبساط تا ابد و بی نهایت ادامه خواهد داشت؟ در نظریه ی جدید مطرح شده نوترینوها تحت تأثیر نیروی جدیدی که از برهمکنش آنها با اَکسِلِرون ها ناشی می شود قرار می گیرند این- نیرو سبب می شود که نوترینوها از هم فاصله بگیرند. درست مثل اینکه یک تکه کش را از دو طرف بکشیم، هر چقدر بیشتر کشیده شود، انرژی بیشتری را در خود ذخیره می کند- در هر ثانیه تریلیونها نوترینو در کوره ی هسته ای ستاره ها از جمله خورشید ما ساخته می شوند.آنها در همه جای عالم جریان پیدا می کنند و میلیاردها نوترینو از هر نوع ماده ای، حتی بدن شما بدون هیچ برهمکنشی عبور می کنند. نوترینوها بار الکتریکی ندارند و جرم آنها هم آن قدر ناچیز است که هنوز اندازه گیری نشده است. آن نیلسون یکی از ارائه دهندگان نظریه ی جدید معتقد است برهمکنش میان اکسلرونها و ذرات دیگر از این هم ضعیف تر است، برای همین این ذرات تاکنون آشکار نشده اند. البتّه نیرویی که این ذرات بر نوترینوها وارد می کنند، آنها را تحت تأثیر قرار می دهد و به این ترتیب باید بتوان وجود چنین نیرویی را در آشکارسازهای نوترینوی فعلی که در نقاط مختلف کره ی زمین وجود دارد نشان داد. مدلهای مختلفی برای انرژی تاریک ارائه شده است، اما آزمودن آنها محدود به اندازه گیریهای دقیق در تغییر سرعت انبساط عالم است. این امر تنها با رصد اجرام بسیار دوردست امکان پذیر است، اما اندازه گیریهای دقیق در چنین فاصله هایی بسیار مشکل است. به گفته ی نلسون این تنها روشی است که ما می توانیم با به کارگیری آشکارسازهای فعلی در کره ی زمین به نیرویی که سبب افزایش انرژی تاریک در عالم می شود پی ببریم. محققان معتقدند جرم نوترینو در عبور از محیطهای مختلف، تغییر می کند، همان طور که عبور نور از هوا، آب یا یک منشور متفاوت است. در نتیجه آشکارسازهای مختلف بسته به اینکه در چه مکانی نصب شده اند، نتایج متفاوتی به دست خواهند آورد. اما اگر بپذیریم که نوترینوها نیز بخشی از انرژی تاریک هستند، وجود نیروی جدیدی می تواند این افت و خیزها را توضیح دهید. به عقیده ی نلسون این برهمکنش میان نوترینوها و اکسلرونها می تواند تا ابد انرژی لازم برای انبساط عالم را تأمین کند. تا پیش از این اخترشناسان به دنبال اطلاعاتی بودند که سرانجام تعیین کنند آیا عالم ما تا ابد منبسط خواهد شد، یا زمانی دوباره در یک " رُمبش بزرگ" منقبض شده و روی خودش بسته می شود. اما حالا باید به دنبال این باشیم که آیا سرعت انبساط عالم همچنان افزایش خواهد یافت یا در جایی ثابت خواهد ماند

.براساس نظریه ی جدید، هنگامی که فاصله ی نوترینوها بسیار زیاد شود، جرم آنها نیز آن قدر افزایش پیدا می کند که دیگر انرژی تاریک بر آنها اثری نخواهد داشت، در نتیجه شتاب انبساط عالم کم کم از بین می رود. و از آن پس عالم همچنان به انبساط خود ادامه خواهد داد، اما با سرعتی که دائماً در حال کاهش است


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 86/10/6:: 12:56 عصر     |     () نظر
اگه حال داشتید تو این سایت عضو شین

http://www.vnnu.com/fa?111157092
 

کلمات کلیدی: اختر فیزیک


نوشته شده توسط مهدی 86/8/29:: 9:15 عصر     |     () نظر

 

‎دید کلی‎:‎ ‎به طور غیر منطقی ولی به ترتیب تاریخی ، از ناحیه مرئی شروع می کنیم و به خارج از آن فرا می رویم. ‏در واقع اگر ناحیه مرئی را یک کمی به طرف فروسرخ و فرا بنفش گسترش دهیم ‏ناحیه نسبتا مشخص بین ( 1 میکرومتر ) 2000 آنگستروم به وجود می آید. که آسان ترین ناحیه براکار ‏کردن است.

کوارتز در تمامی این ناحیه و شیشه در بیشتر قسمت های آن شفاف است. لذا امکان انتخاب ‏بین منشور ، توری و تداخل سنج به عنوان پاشنده وجود دارد و مشکلی در مورد پنجره ها یا عدسی ها پیش نمی ‏آید‎.

‎جذب و اتلاف طیف الکترومغناطیسی‎:

‎طیف الکترومغناطیسی می تواند به شکل عکاسی یا فوتوالکتریکی ثبت شود. برای طیف نمایی ‏جذبی و گسیلی رده وسیعی از منابع در دسترس اند. در زیر طول موج 2000 آنگستروم ، ابتدا هوا ( ‏یا به طور دقیق اکسیژن ) سپس کوارتز شروع به جذب می کنند.

برای‎ ‎فایق آمدن به شکل اولی، ‏مسیر نوری باید تخلیه شود و نام فرا بنفش خلا ، برای این ناحیه از همین جا ناشی می شود. برای ‏گسترش برد عبور به اندازه چند صد آنگستروم ( تا 1040 آنگستروم که حد عبوری لیتیوم فلوراید است ) می ‏توان بلورهای دیگر را با اپتیک کوجایگزین ساخت، اما این امر فقط برای تکنیک های پایین عملی ‏است‎.

‎تداخل سنج ها به علت انعطاف های سطحی و باز تابندگی پایین دارای مشکلات زیادی هستند. در پایین تر ‏از حدود 1800 آنگستروم توری ها تنها پاشنده های قابل دسترس برای تفکیک بالای اند. عدسی ها و ‏‏آینه ها( که دارای باز تابندگی های کمی در این ناحیه اند ) با به کادن توری ، حذف می شوند. در ‏پایین تر از حدود 400 آنگستروم ، برای غلبه بر باز تابندگی کم ، توری ها بایستی در وضع فرود ‏خراشان به کار روند از طرف دیگر آشکار شدن گرما مسئله ساز نمی باشد‎.

‎بررسی نواحی طیفی‎:

‎روش های عکاسی یا فوتو الکتریکی می توانند در سر تا سر ناحیه ‏فرابنفش مورد استفاده قرار گیرند. مسائل مربوط به استفاده از منابع نوری مناسب ممکن است در ناحیه ‏پایین تر از 1040 آنگستروم که در آن پنجره ها نمی توانند برای در بر گرفتن یا مجزا کردن گاز های مختمورد استفاده قرار گیرند، به صورت حاد درآیند. نواحی طول موج کوتاه و بلند اطراف 1040 آنگستروم به ‏ترتیب به نام کاشفین آنها شومن و لیمن نامیده می شود‎.

‎حرکت به سوی فروسرخ ، در می یابیم که انتخاب بین منشورها و شبکه ها و تداخل ‏سنج ها تا حدود 40 میکرومتر ، حد موثر بلور آزاد است. تداخل سنج های ساخته شده از فیلم های ‏نازک نظیر پلی تن را می توان ، تا طول موج های باز هم بلند تری مورد استفاده قرار داد به طوره ‏طیف نمایی تبدیل فوریه می تواند با طیف سنجی شبکه در ناحیه فرو سرخ رقابت ‏کند‎.

‎با ایجاد لیزر های رنگی کوک پذیر طیف نمایی بدون شبکه ها یا تداخل سنج ها در ‏موارد معینی امکان پذیر می شود. به دلیل بالا بودن ضریب باز تابشان می توان آینه های متعددی را بدون ‏اتلاف قابل توجه در شدت به کار برد. مسئله اساسی در قسمت عمده ناحیه ، ناکافی بودنت است. اغلب ‏منابع در ناحیه فروسرخ انرژی نسبتا کمی را تابش می کنند و در اثر آشکار شدن گرما در معرض مسائل ‏جدی ناشی از پارازیت قرار می گیرند. اغلب لازم است که تفکیک را فدای به دست آوردن نسبت مناسبی از ‏علامت به پارازیت بکنیم.

‎طیف نمایی در فروسرخ معمولا به علت فقدان منابع خطی با کافی ، به صورت جذب انجام می شود. از ‏طرف دیگر ضرورت تخلیه در فروسرخ چندان جدی نیست زیرا اکسیژن و ازت خشک جاذب نیستند، و ‏فقط کافی است که بخار آب و گاز کربنیک حذف شوند.

‎در طول موج های حدود چند دهم میلی متر ، ناحیه فروسرخ با ناحیه که موج روی هم می افتند و یک تغییر ‏کلی در روش پیش می آید. منبع و آشکارگرهای برگزیده نخست به شکل لیزرهای زیر میلیمتر در طول موج ‏های مخصوص و سپس به صورت نوسان سازهای کلیسترون کوک پذیر به آسانیبل حصول هستند. در ‏این حالت پاشنده ها به کلی زائد شده و طیف نمایی جذب فقط شامل مشاهده تغییرات در علامت در حین ‏جاروب منبع و آشکارگر بر روی محدوده طول موج مورد لزوم می شود‎.

‎طیف نمایی فرکانس رادیویی در دوره نسبتا متفاوت قرار می گیرد. از یک طرف به سادگی گسترش ‏طیف نمایی که موج است به طرف طول موج هایی بلندتر ، از طرف دیگر ادغام روش های متعدد تشدید است ‏که برای مطالعه گذارهای بین زیر ترازهای مغناطیسی و یا ساختار فوق ریز توسداده شده اند. در این ‏روش ها ، انتقالات هر چند که به وسیله میدان فرکانس رادیویی القا شوند، معمولا نه از طریق جذب انرزی ، ‏بلکه به وسیله روش های دیگر ، نظیر انحراف حاصل از تغییر در جهت اسپین یا تغییری در جهت ‏‏قطبش تابش تشدید آشکار می شوند‎.‎


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/7:: 7:34 عصر     |     () نظر

با توجه به دستاورد های جدید، فیزیکدانان ذرات بنیادی، با اطمینان بیش تری مدعی هستند که ماخو ها نمی توانند 90% جرم عالم را تشکیل دهند. برای همین مصرانه در جستجوی ویمپ ها هستند. این ذرات بسیار کوچکتر از اتم، اما دارای جرم اند. با ماده ی باریونی برهم کنش نمی‌کنند و حتی به راحتی از میان آن عبور می‌کنند. از آن جا که جرم این ذارت بسیار کم است، تعداد زیادی از آنها لازم است تا بتوانند این مقدار عظیم ماده ی تاریک را تامین کنند. بهترین نامزد این گونه ذرات نوترینو ها هستند که هر ثانیه میلیارد ها عدد از ان ها از بدن ما و کره ی زمین عبور می‌کند. آشکارساز هایی که اخیرا در اعماق معدن هایی در آمریکا و ژاپن جاسازی شده اند، نشان می‌دهند که ممکن است نوترینو ها جرم داشته باشند. این آشکار ساز ها در اعماق زمین و در معادن فلزات کار گذاشته می‌شوند تا هیچ ذره ای به آنجا راه پیدا نکند. روشی دیگر برای آشمار سازی ویمپ ها سرد کردن یک بلور بزرگ تا اندازه ی صفر مطلق است. در این شرایط حرکت و ارتعاش اتم های بلور به حداقل می‌رسد و اگر در این حالت یک ویمپ به اتمب برخورد کند، آن را مرتعش می‌کند و دمایش را بالا می‌برد. این گرمای ناچیز ایجاد شده قابل اندازه گیری است. در آزمایش مشابه دیگری از یخ های قطبی به جای بلور سرد استفاده شده است. وجود ماده ی تاریک نه فقط اختلاف در محاسبات جرم کهکشان ها را توضیح می دهد، بلکه یکی از مشکلات نظریه‌ی مهبانگ را که سال ها موجب راز کیهان شناسان بود، حل می‌کند. بنا بر نظریه مهبانگ عالم از گشترش و انبساط نقطه ی بی نهایت کوچکی از انرژی بی نهایت آغاز شده است. سرعت انبساط آن قدر زیاد بوده است که بر گرانش غلبه کرده و به مواد اجازه می‌دهد که به صورت کلوخه ای گرد هم آیند و ستارگان و کهکشان ها را تشکیل دهند. انبساط عالم که توسط ادوین هابل کشف شد، قسمت اول نظریه را تایید می‌کند. اما سوال این است که چگونه در عالمی که همه ی مواد در آن یکنواخت پخش شده و گرانش وارد بر همه ی ذارت آن یکسان است، ممکن است ساختار های کلوخه ای تشکیل شود. عامل دیگری باید به گرانش ذارت کمک کرده باشد.

با وجود یافته های فراوان معمای ماده ی تاریک هنوز سر به مهر مانده است. طرح های بزرگ پژوهشی که با روش های مختلف در جستجوی یافتن هندسه‌ی عالم و آغاز و سرانجام آن هستند.

اگر ماده‌ی تاریک واقعا از ویمپ ها باشد باید واقعیتی تلخ را بپذیریم. این که نه فقط در مرکز جهان نیستیم، بلکه از نوع ماده ی اصلی جهان نیز تشکیل نشده ایم.


کلمات کلیدی: کوانتوم


نوشته شده توسط مهدی 86/4/7:: 7:34 عصر     |     () نظر
<      1   2   3   4   5   >>   >