سفارش تبلیغ
صبا ویژن
دانش، گنج بزرگی است که فنا نمی پذیرد . [امام علی علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

کاربرد لیزر در مصارف نظامی

کاربردهای نظامی لیزر همیشه عمده ترین کاربردهای آن بوده است . فعلا مهمتریم کاربردهای نظامی لیزر عبارت اند از:

الف) فاصله یا بهای لیزری

ب) علامت گذارهای لیزری

ج) سلاح های هدایت انرژی

فاصله یاب لیزری مبتنی بر همان اصولی است که در رادارهای معمولی از آن ها استفاده می شود. یک تپ کوتاه لیزری ( معمولا با زمان 10 تا 20 نانوثانیه) به سمت هدف نشانه گیری می شود و تپ پراکنده برگشتی بوسیله یک دریافت کننده مناسب نوری که شامل آشکارساز نوری است ثبت می شود. فاصله مورد نظر با اندازه گیری زمان پرواز این تپ لیزری به دست می اید. مزایای اصلی فاصله یاب لیزری را می توان به صورت زیر خلاصه کرد :

الف) وزن - قیمت و پیچیدگی آن به مراتب کمتر از رادارهای معمولی است.

ب) توانایی اندازه گیری فاصله حتی برای هنگامی که هدف در حال پرواز در ارتفاع بسیار کمی از سطح زمین و یا دریا باشد.

اشکال عمده این نوع رادار در این است که باریکه لیزر در شرایط نامناسب رویت به شدت در جو تضعیف می شود. فعلا چند نوع از فاصله یابهای لیزری با بردهای تا حدود 15 کیلومتر مورد استفاده اند :

:الف) فاصله یاب های دستی برای استفاده سرباز پیاده ( یکی از آخرین مدل های آن در آمریکا ساخته شده که در جیب جا می گیرد و وزن آن با باتری حدود 500 گرم است.

:ب) سیستم های فاصله یاب برای استفاده در تانکها

:ج) سیستم های فاصله یاب مناسب برای دفاع ضد هوایی

اولین لیزرهای که در فاصله یابی از آن ها استفاده شد لیزرهای یاقوتی با سوئیچ Q بودند. امروزه فاصله یابهای لیزری اغلب بر اساس لیزرهای نئودمیم با سوئیچ Q طراحی شده اند. گرچه لیزرهای CO2 نوع TEA در بعضی موارد ( مثل فاصله یاب تانک ها ) جایگزین جالبی برای لیزرهای نئودمیم است.

دومین کاربرد نظامی لیزر در علامت گذاری است. اساس کار علامت گذاری لیزری خیلی ساده است : لیزری که در یک مکان سوق الجیشی قرار گرفته است هدف را روشن می سازد به خاطر روشنایی شدید نور هنگامی که هدف به وسیله یک صافی نوری با نوار باریک مشاهده شود به صورت یک نقطه روشن به نظر خواهد رسید. سلاح که ممکن است بمب - موشک - و یا اسلحه منفجر شونده دیگری باشد بوسیله یک سیستم احساسگر مناسب مجهز شده است. در ساده ترین شکل این احساسگر می تواند یک عدسی باشد که تصویر هدف را به یک آشکارساز نوری ربع دایره ای که سیستم فرمان حرکت سلاح را کنترل می کند انتقال می دهد و بنابراین می تواند آن را به سمت هدف هدایت کند. به این ترتیب هدف گیری با دقت بسیار زیاد امکان پذیر است. ( دقت هدف گیری حدود 1 متر از یک فاصله 10 کیلومتری ممکن به نظر می رسد.) معمولا لیزر از نوع Nd: YAG است. در حالی که لیزرهای CO2 به خاطر پیچیدگی آشکارسازهای نوری ( که مستلزم استفاده در دماهای سرمازایی است) نامناسب اند. علامت گذاری ممکن است از هواپیما - هلیکوپتر و یا از زمین انجام شود. ( مثلا با استفاده از یک علامت گذار دستی ).

اکنون کوشش قابل ملاحظه ای هم در آمریکا و هم در روسیه برای ساخت لیزرهایی که به عنوان سلاحههای هدایت انرژی به کار می روند اختصاص یافته است. در مورد سیستم های قوی لیزری مورد نظر با توان احتمالا در حدود مگا وات ( حداقل برای چند ده ثانیه ) یک سیستم نوری باریکه لیزر را به هدف ( هواپیما - ماهواره یا موشک ) هدایت می کند تا خسارت غیر قابل جبرانی به وسایل احساسگر آن وارد کند و یا اینکه چنان آسیبی به سطح آن وارد کند که نهایتا در اثر تنش های پروازی دچار صدمه شود سیستم های لیزر مستقر در زمین به خاطر اثر معروف به شکوفایی گرمایی که در جو اتفاق می افتد فعلا چندان عملی به نظر نمی رسند. جو زمین توسط باریکه لیزر گرم می شود و این باعث می شود که جو مانند یک عدسی منفی باریکه را واگرا سازد با قرار دادن لیزر در هواپیمای در حال پرواز در ارتفاع بالا و یا در یک سفینه فضایی می توان از این مساله اجتناب ورزید. اطلاعات موجود در این زمینه ها به علت سری بودن آن ها اغلب ناقص و پراکنده اند. اما به نظر می رسد که این سیستم ها کلا شامل باریکه هایی پیوسته با توان 5 تا 10 مگا وات (برای چند ثانیه ) با یک وسیله هدایت اپتیکی به قطر 5 تا 10 متر باشند مناسب ترین لیزرها برای اینگونه کاربرد ها احتمالا لیزرهای شیمیایی اند ( DF یا HF) . لیزرهای شیمیایی به ویژه برای سیستم های مستقر در فضا جالب اند زیرا توسط آن ها می توان انرژی لازم را به صورت انرژی ذخیره فشرده به شکل انرژی شیمیایی ترکیب های مناسب تامین کرد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:23 عصر     |     () نظر

همچنانکه بشر عمیق و عمیق تر به مطالعه خواص مواد اطراف خود می پردازد با تعداد بیشتری از مظاهر نیروهای الکتریکی مواجه می شود انرژی الکتریکی برای بشر روشهای گوناگون و دقیقی در حل مسائل مختلف علم و انقلاب تکنولوژیک معاصر به ارمغان آورد.

ساختمان اتم:

هر اتم به صورت سیستم یکی از بارهای الکتریکی ظاهر می شود. هسته دارای بار مثبت و الکترون های در حال چرخش در اطراف آن دارای بار منفی می باشد. چون تمرکز جرم اتم در هسته اش می باشد. چنین به نظر می رسد که تقریبا تمامی وجود ماده با بار مثبت توام است که به مقدار زیادی ، خواص دنیای اطراف ما را تعیین می کند.

اختلاف بین مواد شیمیایی مثلا اکسیژن و آهن فقط به واسطه این واقعیت است که هسته اتمی اکسیژن محتوی 8 بار مثبت و آهن محتوی 26 بار مثبت بوده و لایه های هر اتم دارای همان تعداد الکترون می باشد بیشتر واکنشهای شیمیایی در طبیعت نتیجه عکس العمل بین الکترونهای خارجی است که بطور نسبی بیشترین فاصله را از هسته دارا می باشند.

برای مدتها تصور می شد که الکترون ساده ترین و کوچکترین ذره در جهان است. الکترون های تمامی مواد کاملا یکسان و مشابه هم می باشند. چه در آب یا چوب یا آهن تحت هیچ شرایطی ممکن نیست که بار الکتریکی مثبت یا منفی کوچکتر از بار مطلق یک الکترون وجود داشته باشد.

قوانین حاکم بر حرکت الکترون:

- در طی مطالعات زیاد معلوم شده که قوانین حرکتی اثبات شده برای مواد بزرگ را نمی تواند بطور کامل برای الکترونهای داخل اتم به کار رود. در اجسامی که یکصد میلیونیم سانتی متر بعد دارند به کلی قوانین متفاوتی مطرح می شود. در مقایسه با منظومه شمسی یا هر سیستم مکانیکی عظیم الجثه ای که می تواند با توجه به سرعت اولیه اش در هر مسیری حرکت کند.

- الکترون ها در اتم مجبورند که فقط در طول مدارهایی حرکت کنند که مربوط به مقادیر معین انرژی و همان مغناطیسی آنها می شود. به طوری که الکترون نمی تواند مقادیر دیگری انرژی را جز مقادیر فوق الذکر داشته باشد. طبیعت منفرد و غیر متوالی مکان الکترون ها در مدارها یا به طور دقیق تر وجود مقادیر دقیقاً معین از انرژی در اتم یکی از خواص اساسی تئوری مکانیک کوانتومی است.

- بر طبق تئوری کوانتومی انتقال یک الکترون از یک مدار به مدار دیگر یعنی از یک حالت انرژی به حالت دیگری از انرژی در اتم با جذب یا پخش یک بار انرژی دقیقا معین همراه است. اگر یک حالت معین انرژی بوسیله یک الکترون اشغال شود، الکترون دیگر نمی تواند آن را اشغال نماید و یک اتم نمی تواند دو الکترون با حالت انرژی یکسان داشته باشد.

- از تمام حالات ممکنی که یک الکترون می تواند در یک اتم داشته باشد در اولین حالت آن الکترون کمترین مقدار انرژی را داشته در نتیجه به شدت جذب هسته شده و در داخلی ترین مدار الکترونی نزدیک به هسته متمرکز می گردد. بنابر این ، همه الکترونها نمی توانند در یک سطح انرژی متمرکز شوند و هر الکترون بعدی سطح انرژی بیشتری را اشغال کرده و بقیه سطوح غیراشغال شده باقی می مانند. این قانون که نشان دهنده پخش الکترون در تمام عناصر به ترتیب افزایش انرژی می باشد، حالت کوانتومی نام دارد.

- خواص شیمیایی یک اتم بستگی به مقدار و ترتیب الکترون ها در مدار الکترونی دارد.

مدار الکترونی عناصر در جدول تناوبی:

- هر دوره تناوب از جدول تناوبی مطابق با شباهتهای موجود در خواص شیمیایی اتمها ساخته شده است. بنابر این ، خواص شیمایی مثلا تناوب دوم ، نزدیک به خواص شیمیایی تناوب اول است.

- ترتیب الکترون ها در اتم لیتیوم شبیه اتم سدیم است (با سطوح انرژی متفاوت تناوب بعدی). شکل الکترونی مشابهی را برای اتم پتاسیم داریم. در مورد اتمهای روبیدیوم و سزیوم همین شباهت وجود دارد. تمامی این عناصر متعلق به اولین گروه از جدول تناوبی یعنی گروه فلزات قلیایی می باشد.

- برای جداکردن خارجی ترین الکترون ها در اتمی مثلا لیتیوم لازم است که انرژیی معادل 5.39 الکترون ولت مصرف شود. برای دو الکترونی که به هسته نزدیک تر می باشند، چون با قدرت بیشتری به وسیله هسته نگهداری می شوند انرژی اتصال آنها با هسته به ترتیب برابر 75.6ev و 122.4ev می باشد.

- جریان مستقیمی از الکترون ها (مستقل از نوع اتمهایشان) در یک هادی یا نیمه هادی جریان الکتریسته خوانده می شود.

انتقالات مجاز الکترونی بین ترازی:

- زمانی که یک اتم از خارج انرژی دریافت می کند این انرژی در بسته های دقیقا معین کوانتا جذب اتم می گردد و الکترون ها به مدارهای دورتر از هسته به سطوح انرژی بالاتر جابه جا می شوند و جذب بیشتر کوانتای انرژی به وسیله اتم باعث انتقال بیشتر الکترون از هسته می گردد. این حالت که اتم به صورت تحریک شده در آمده نمی تواند برای مدت طولانی دوام بیاورد و با برگشتن الکترون به حالت قبلی اتم نیز به حالت عادی خود بر می گردد.

- قسمت زیادی از انرژی الکترون تحریک شده به صورت کوانتایی از اشعه الکترومغناطیس پخش می شود زمانی که این انتقال الکترونی در خارجی ترین لایه ها انجام گیرد که انرژی اتصال الکترون به هسته کمترین مقدار است، کوانتایاشعه مادون قرمز ، نورمرئی یا اشعه ماورای بنفش پخش می گردد.

- در زمانی که الکترون ها به اربیتالهای نزدیک هسته منتقل شوند (برای مثال پرش به یک یا چند مدار) کوانتای پر انرژی تری از تشعشعات الکترومغناطیسی «اشعه ایکس محتوی انرژی چند برابر بیشتر از تابش مادون قرمز و ماورای بنفش) منتشر می شود.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:23 عصر     |     () نظر

 مادون در لغت به معنای زیر دست و قرمز به معنای هر چه به رنگ خون باشد، است. پس میتوان گفت که مادون قرمز اشعه بسیار ریز و قرمز رنگ است.

اطلاعات اولیه

کشف هرسل اولن گام در ایجاد پدیده‌ای که ما آن را طیف الکترومغناطیسی مینامیم. نور مرئی و پرتوهای مادون قرمز دو نمونه اشکال فراوانی از انرژی هستند که توسط تمام اجسام موجود در زمین و اجرام آسمانی تابانده میشوند. مادون قرمز در طیف الکترومغناطیسی دارای محدوده طول موجی بین 0.78 تا 1000 میکرو متر است. تنها با مطالعه این تشعشعات است که میتوانیم اجرام آسمانی را تشخیص و تمیز دهیم و تصویری کامل از چگونگی ایجاد جهان و تغییرات آن بدست آوریم. در سال 1800 سر ویلیام هرشل یک نمونه نامرئی از تشعشعات را کشف کرد که این نمونه دقیقا زیر بخش قرمز طیف مرئی قرار داشت. او این شکل از تشعشعات را مادون قرمز نامید.

سیر تحولی و رشد

Greathouse و همکارانش طی مطالعه‌ای تاثیر لیزر مادون قرمز را به انتقال عصبی ، عصب رادیال بررسی کردند. زمان تاخیر ، دامنه پتانسیل عمل و دما ، متغیرهای مورد آزمایش مشاهده نشد.Lynn Snyder و همکارانش اثر لیزر کم توان هلیوم - نئون را بر زمان تاخیر شاخه حسی عصب رادیال در دو گروه لیزر و پلاسبو بررسی نمودند و مشاهده کردند که در گروه لیزر ، افزایش معنی دارا در زمان تاخیر حسی پس از بکارگیری لیزر ایجاد گردیده است.

Bas Ford و همکارانش طی مطالعه‌ای اثر لیزر کم توان هلیوم - نئون را بر شاخه حسی اعصاب رادیال و مدین بررسی کردند. هیچ اختلاف معنی داری در دامنه پتانسیل عمل ، زمان تاخیر و دما ساعد بعد از بکارگیری لیزر مشاهده نشد.Baxter و همکارانش افزایش معنی دار در زمان تاخیر عصب مدین بعد از بکارگیری لیزر گرارش کردند. Low و همکارانش کاهش دما را به دنبال تابش لیزر کم توان مادون قرمز دیدند.

نتایج اشعه مادون قرمز

گرمایی که ما از خورشید یا از یک محیط گرم احساس میکنیم، همان تشعشعات مادون قرمز یا به عبارتی انرژی گرمایی است. حتی اجسامی ‌که فکر میکنیم خیلی سرد هستند، نیز از خود انرژی گرمایی منتشر میسازند (یخ و بدن انسان). سنجش و ارزیابی انرژی مادون قرمز ساطع شده از اجرام نجومی ‌به علت اینکه بیشترین جذب را در اتمسفر زمین دارند مشکل است. بنابراین بیشتر ستاره شناسان برای مطالعه انتشار گرما از این اجرام از تلسکوپهای فضایی استفاده میکنند.

مادون قرمز در نجوم

تلسکوپها و آشکارسازهایی که توسط ستاره شناسان مورد استفاده قرار میگیرند نیز از خودشان انرژی گرمایی منتشر میسازند. بنابراین برای به حداقل رساندن این تاثیرات نامطلوب و برای اینکه بتوان حتی تشعشعات ضعیف آسمانی را هم آشکار ساخت، اخترشناسان معمولا تلسکوپها و تجهیزات خود را به درجه حرارتی نزدیک به 450?F ، یعنی درجه حرارتی حدود صفر مطلق ، میرسانند. مثلا در یک ناحیه پرستاره ، نقاطی که توسط نور مرئی قابل رویت نیستند، با استفاده از تشعشعات مادون قرمز بخوبی نشان داده میشود. همچنین مادون قرمز میتواند چند کانون داغ و متراکم را همره با ابرهایی از گاز و غبار نشان دهد. این کانونها شامل مناطق پرستاره‌ای هستند که در واقع میتوان آنها را محل تولد ستاره‌ای جدید دانست. با وجود این ابرها ، رویت ستاره‌های جدید با استفاده از نور مرئی به سختی امکانپذیر است.

اما انتشار گرما باعث آشکار شدن آنها در تصاویر مادون قرمز میشود. اختر شناسان با استفاده از طول موجهای بلند مادون قرمز میتوانند به مطالعه توزیع غبار در مراکزی که محل شکل گیری ستاره‌ها هستند، بپردازند. با استفاده از طول موجهای کوتاه میتوان شکافی در میان گازها و غبارهای تیره و تاریک ایجاد کرد تا بتوان نحوه شکل گیری ستاره‌های جدید را مورد مطالعه قرار داد. فضای بین ستاره‌ای در کهکشان راه شیری ما نیز از توده‌های عظیم گاز و غبار تشکیل شده است. این فضاهای بین ستاره‌ای یا از انفجارهای شدید نواخترها ناشی شده‌اند و یا از متلاشی شدن تدریجی لایه‌های خارجی ستاره‌هایی جدید از آن شکل میگیرند. ابرهای بین ستاره‌ای که حاوی گاز و غبار هستند، در طول موجهای بلند مادون قرمز خیلی بهتر آشکار میشوند (100 برابر بیشتر از نور مرئی).

اخترشناسان برای دیدن ستاره‌های جدید که توسط این ابرها احاطه شده‌اند، معمولا از طول موجهای کوتاه مادون قرمز برای نفوذ در ابرهای تاریک استفاده میکنند. اخترشناسان با استفاده از اطلاعات بدست آمده از ماهوارهای نجومی ‌مجهز به مادون قرمز صفحات دیسک مانندی از غبار را کشف کردند که اطراف ستاره‌ها را احاطه کرده‌اند. این صفحات احتمالا حاوی مواد خامی ‌هستند که تشکیل دهنده منظومه‌های شمسی هستند. وجود آنها خود گویای این است که سیاره‌ها در حال گردش حول ستاره‌ها هستند.

مادون قرمز در پزشکی

اگر نگاه دقیق و علمی ‌به یک طیف الکترومغناطیسی بیندازیم، میبینیم که از یک طرف طیف تا سوی دیگر آن ، انواع تشعشعات و پرتوها بر اساس طول موج و فرکانس‌های مختلف قرار دارند، از آن جمله میتوان به تشعشعات گاما ، اشعه ایکس ، ماورای بنفش ، نور مرئی ، مادون قرمز و امواج رادیویی اشاره کرد. هر کدام از این پرتوها و تشعشعات همگام با پیشرفت بشر ، به نوبه خود چالش‌هایی را در زمینه‌های علمی ‌پدید آورده‌اند که در اینجا علاوه بر کاربرد مادون قرمز در شاخه ستاره شناسی ، اشاره‌ای به کارآیی چشمگیری این پرتو در رشته پزشکی خواهیم داشت.

کاربرد درمانی مادون قرمز

بکار بردن گرما یکی از متداولترین روشهای درمان فیزیکی است. از موارد استعمال درمانی مادون قرمز موارد زیر را میتوان ذکر کرد.

تسکین درد

با وجود حرارت ملایم ، کاهش درد به احتمال زیاد بواسطه اثر تسکینی بر روی پایانه‌های عصبی ، حسی ، سطحی است. همچنین به علت بالا رفتن جریان خون و متعاقب آن متفرق ساختن متابولیتها و مواد دردزای تجمع در بافتها ، درد کاهش مییابد.

استراحت ماهیچه

تابش این اشعه راه مناسبی برای درمان اسپاسم و دستیابی به استراحت عضلانی میباشد.

افزایش خون رسانی

در درمان زخمهای سطحی و عفونتهای پوستی ، برای اینکه فرآیند ترمیم به خوبی انجام گیرد، باید به مقدار کافی خون به ناحیه مورد نظر برسد و در صورت وجود عفونت نیز افزایش گردش خون سبب افزایش تعداد گلبولهای سفید و کمک به نابودی باکتریها میکند. از این پرتو میتوان برای درمان مفصل آرتوریتی و ضایعات التهابی نیز استفاده کرد.

کاربرد تشخیصی مادون قرمز

از مهمترین کابردهای تشخیصی آن میتوان توموگرافی را نام برد. اصطلاح ترموگرافی به عمل ثبت و تفسیر تغییراتی که در درجه حرارت سطح پوست بدن رخ میدهد، اطلاق میشود. تصویر حاصل از این روش که توموگرام نامیده میشود، بخش الگوی حرارتی سطح بدن را نشان میدهد. در توموگرافی ، آشکار ساز ، تشعشع حرارتی دریافت شده توسط دوربین را به یک سیگنال الکترونیکی تبدیل میکند و سپس آن را علاوه بر تقویت بیشتر ، پردازش میکند تا اینکه یک صفحه کاتودیک مثل مونیتور تلویزیون آشکار شود.

تصاویر بدست آمده به صورت سایه‌های خاکستری رنگ میباشند، بدین معنی که سطوح سردتر به صورت سایه‌های خاکستری روشن دیده میشوند و در نوع رنگی آن نیز نواحی گرم ، رنگ قرمز و نواحی سرد ، رنگ روشن خواهند داشت. درجه حرارت پوست بدن در نتیجه فرآیندهای فیزیکی ، فیزیولوژیک طبیعی یا بیماری تغییر میکند. از این خاصیت تغییر گرمایی در عضوی خاص یا در سطح بدن برای آشکارسازی یک بیماری استفاده میشود که مهمترین آنها به قرار زیر است.

- بیماری پستان : وسیع ترین جنبه کاربردی توموگرافی در آشکار سازی سرطانهای پستانی است.

زیرا روشی کاملا مطمئن و بدون آزار است.

از پرتوهای یونیزان استفاده نمیشود.

روشی کاملا سریع ، راحت و ارزان است.

به دلیل بی ضرر بودن از قابلیت تکراری بسیار زیادی برخوردار است.

کاربرد ترموگرافی در مامائی

چون جفت از فعالیت بیولوژیکی زیادی برخوردار است. درجه حرارت حاصله در این محل بطور قابل ملاحظه‌ای از بافتهای اطراف بیشتر است. پس میتوان از توموگرافی برای تعیین محل جفت استفاده کرد.

ضررهای مادون قرمز

از طرف دیگر خطرهایی نیز در استفاده از مادون قرمز وجود دارد که میتوان به سوختگی الکتریکی (در اثر اتصال بدن به مدارات الکتریکی دستگاه) سر درد ، تولید ضعیف در بیمار و آسیب به چشمها در اثر تابش مستقیم پرتو اشاره کرد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:22 عصر     |     () نظر

برای اولین بار میدان مغناطیسی یک ستاره نوترونی به شکل مستقیم تعیین شد

با استفاده از رصدخانه پرتو X آزانس فضایی اروپا موسوم به XMM-Newton ، اخترشناسان اروپایی موفق شدند برای اولین بار و بدون واسطه میدان مغناطیسی یک ستاره نوترونی را مورد سنجش قرار دهند و دید دقیق تری نسبت به این موجودات راز آلود کیهان به دست آورند.

ستاره های نوترونی اجرامی بسیار چگالند . این ستاره ها با جرمی معادل خورشید در کره ای به قطر 20 تا 30 کیلومتر فشرده می شوند و جرمی با چگالی بسیار بالا را تولید می کنند. ستاره های نوترونی حاصل انفجارهای ابرنواختری است. پس از آنکه لایه های ستاره در اثر انفجاری مهیب در فضا پراکنده شد بقایای ستاره اصلی به شکل قلبی چگال باقی می ماند و ستاره نوترونی را تشکیل می دهد ستاره ای که با آهنگی غیرقابل تصور به دور خود می چرخد.

این گونه اجرام اگرچه خانواده ای آشنا ازاجرام کیهانی به حساب می ایند اما به شکل فردی و تک تک اطلاع اندکی از آنها در دست داریم.این اجرام در هنگام تولد دمای بسیار بالایی دارند و تابش قوی از خود ساطع می کنند اما پس از گذشت زمان با سرعت حرارات خود را از دست می دهند و به همین دلیل تابشهای قوی خود نظیر تابش در محدوده پرتو X را از دست داده و در طول موجهای رادیویی به تابش می پردازند و به همین دلیل است که برای بررسی آنها باید از این طول موجها استفاده کرد. تنها تعداد اندکی از این اجرام تابشهایی در طول موج X نشان می دهند.

یکی از این موارد ستاره ای نوترونی موسوم به 1 E1207.4-5209 است که در خلال طولانی ترین عکسبرداری رصدخانه XMM-Newton که 72 ساعت به طول انجامید آشکار شد.با کمک این تصویر برداری اخترشناسان اروپایی موفق شدند برای اولین بار به طور مستقیم به اندازه گیری میدان مغناطیسی این ستاره بپردازند این در حالیست که پیش از این تنها با کمک روشهای غیر مستقیم نظیر استفاده از نظریات شکل گیری ستاره های پرجرم و یا بررسی آهنگ کاهش دوران ستاره نوترونی (که با کمک بررسی داده های رادیویی امکان پذیر می شد) این میدان مغناطیسی مورد محاسبه قرار می گرفت . اما این بار اخترشناسان توانستند با رصد تابش پرتو X یک ستاره نوترونی این میدان را مستقیما ندازه گیری کنند تابش پرتو X پیش از آنکه در فضا منتشر شود از درون میدان مغناطیسی ستاره نوترونی عبور می کند و این میدان اثر انگشت خود را بر روی این پرتو باقی می گذارد. با بررسی پرتوهای دریافت شده می توان میدان را شناسایی کرد . اما نکته هیجان انگیز در خصوص این ستاره نوترونی جای دیگری بود میدان مغناطیسی که به روش مستقیم مورد اندازه گیری قرار گرفت 30 برابر ضعیف تر از میدانی بود که روشهای غیر مستقیم اعلام می کرد ند و این پرسشی تاز ه را مطرح می کرد منشا این اختلاف چیست.

در مدلهای رایج اندازه گیری میدان مغناطیسی ستاره های نوترونی فرض می شود که کاهش سرعت ستاره تنها در اثر میدان مغناطیسی ستاره و واکنش ان با محیط اطراف است د حالیکه به نظر می رسد، حداقل در مورد 1 E1207.4-5209 عامل دیگری نیز در کاهش سرعت ستاره نقش ایفا می کند و آن قرصی از بقایای انفجار ابرنواختری است که در اطراف ستاره نوترونی باقی مانده است.

حال این سوال مطرح است که آیا این مورد تنها یک استثنا و گونه جدیدی از ستاره های نوترونی است و یا نمونه ای عمومی از این خانواده از اجرام آسمانی است. بررسیهای بعدی باید پاسخگوی این سوال باشد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:22 عصر     |     () نظر

صدها آزمایش گوناگون ثابت کرده که امواج نوری ووجود دارند .این امواج بر خلاف امواج آب و امواج صوتی . در خلاء نیز انتشار می یابد . نور . امواج رادیویی امواج مادون قرمز .امواج ماوراء بنفش و امواج (روتنگن ) همگی به خانواده بزرگ (امواج مغناطیسی ) تعلق دارند .
ماون قرمز به نوبه خود نسبت به نور قرمز از طول موج بلندتری برخودار است . در حالی که نور مارواءبنفش دارای طول موج کوتاهتری از نور بنفش بوده و اشعه رونتگن در جای خود طول موج کوتاهتر ی از نور ماوراء بنفش دارد . تا آغاز قرن حاضر این طور تصور می شد که با توجه به آگاهی ذهنی که انسان از نور به عنوان موج دارد به تمام خصوصیات نو ر پی برده و آن را کاملاً شناخته است .ولی با ظهور فیزیکدانهای بزرگی چون "پلانک " و "اینشتین " این تصور تغییر یافت .
آنها یک بار دیگر نشان دادند که در قلمرو سریتعترینها و کو چکترینها قوه تخیل و درک و استنباط ما از کار باز می ایستد و عاجر می ماند و طبیعت دراین زمینه کاملاً مغایر با آنچه انتظارداریم رفتار می کند . اینشتین به این مطلب پی برد که :انرژی مربوط به یک موج الکترو مغناطیسی همواره در مجموعه ها و بسته های کوچک یا به اصطلاح در "کوانت ها " یا ذره های معنین منتقل می شوند که امروزه آنها را "فوتون "یا "ذره نوری " می نامند . بطور خلاصه بسته به اینکه چه نوع آزمایشی بر روی نور انجام می شود و چه تجربه ای در حال اجرا است .نور می تواند به صورت موج یا ذره نمودار شود.
هر چه طول موج نو کوتاهتر باشد انرژی ذره نوری مربوط به آن بیشتر است . نور آبی طول موج کوتاهتری از نور قرمز دارد به همین دیلیل فوتونهای نور آبی انرژی بیشتری نسبت به فوتونهای نور قرمز دارند . پرتوهای "رونتگن " طول موجی باز هم کوتاهت ر دارند و در نتیجه فوتونهای اشعه رونتگن ، پر انرژی هستندمثلاَ تشعشعات رونتگن می توانند در عمق بدن اسنان نفوذ کنند و این خاصیتی است که پزشکان ،آگاهانه از آن برای تشخیص شکستگی استخوانها ،استفاده می کنند .
ذر ات نوری یا "فوتونها " مانند اتمها یا الکترونها دارای جرم نیستند و در تمام طول عمر خود با سرعت نور در حرکت هستند .
البته خیلی مشکل می توان تصور کر د که ذراتی بدوون جرم وجود داشته باشند ولی با خودانرژی به این طرف و آن طرف حمل کنندو یا اینکه نو یک بار به صورت موج و بار دیگر به صورت جریان ذره ای نمودار شود . اما این دقیقاَ خصوصیات فیزیک جدید در قرن بیستم است .البته می توامسیر جریانات را در سرزمین اتمها از طریق ریاضیات محاسبه کرد .برای این منظور معامله ای وجود دارد که می توان با آن انرژی نو را با توجه به طول موج آن محاسبه کرد ،ولی تصور و تخیل ما اغلب اوقات برای درک سیر تحولات طبیعی در قلمر و کوچکترینها و سریعترینها محدود و ناتوان است .
شاید مغز ما و به پیروی از آن نیروی تصور و تخیل ما از ابتدا برای درک مسایلی چون اتمها و کیهان پیش بینی نشده بوده و بلکه برای این بوده که فرضاً در جستجوی غذای خودباشیم ،و یا اینکه که غارخود را پیدا کنیم ،یا اینکه حیوان درنده ای مثل شیر را در جنگل تشخیص دهیم و به عبارت دیگر چیزهایی را تجزیه و تحلیل و ارزیابی کنیم که یک سانتیمتر، یک متر و یا یک کیلو متر اندازه دارند و سریعتر از 100کیلو متر در ساعت حر کت نمی کنند.


کلمات کلیدی: اپتیک


نوشته شده توسط مهدی 86/4/1:: 10:52 عصر     |     () نظر
<      1   2   3   4   5   >>   >