سفارش تبلیغ
صبا ویژن
هیچ چیز نزد خداوند ـ عزّوجلّ ـ، منفورتر ازبخل و بدخویی نیست که این یک، همان گونه که سرکه عسل را تباه می کند، ایمان را تباه می کند . [رسول خدا صلی الله علیه و آله]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ
 
شاید به زودى تصور متداول درباره الماس ها، به کلى دگرگون شود. الماس هایى که به خاطر زیبایى، کمیاب بودن و زمان طولانى تولیدشان ارزش فوق العاده اى داشتند، امروزه در آزمایشگاه و در مدت زمانى حدود یک ساعت به وجود مى آیند. اینکه این دگرگونى چه تاثیرى در صنعت جواهرسازى یا قیمت الماس هاى طبیعى در بازار خواهد داشت هنوز در پرده اى از ابهام است. اما درباره نقش این الماس هاى آزمایشگاهى در تکنولوژى، شایعه هایى برخاسته از مجامع علمى به گوش مى رسد.

بیشتر از هشتاد درصد از الماس هاى معدنى طبیعى به مصارف صنعتى از قبیل ابزارهاى برش یا مواد ساینده براى تراشکارى و پرداخت دیگر سنگ هاى قیمتى، فلزات، گرانیت و شیشه مى رسند. استفاده از الماس به عنوان نیمه رسانا نیز نیازمند شرایط ویژه اى مثل بالاترین درجه خلوص، بهترین بلورینگى و تعیین اتم ها به لحاظ الکتریکى فعال براى ایجاد گذرگاه الکتریکى در وسیله مورد نظر است. اما تمامى الماس هاى طبیعى به خاطر نقص ها، ناخالصى ها و ساختار ضعیف شان براى مصارف الکترونیکى نامناسبند. حتى با اینکه الماس هاى مصنوعى و طبیعى داراى کیفیت جواهرى بسیار ارزشمند هستند، اما ممکن است به خاطر رگه هاى ناچیز ناخالصى ها براى استفاده به عنوان نیمه رسانا مناسب نباشند. در واقع تنها خالص ترین این سنگ ها در کاربردهاى الکترونیکى پرقدرت از سلفون ها گرفته تا کامپیوترهاى شخصى و خطوط ارتباطاتى قابل استفاده اند.

به گفته جیمز باتلر (J.Butler)، یکى از شیمیدانان محقق در آزمایشگاه تحقیقات نیروى دریایى ایالات متحده، به لحاظ تاریخى سه مشکل عمده سر راه استفاده از الماس هاى طبیعى در کاربردهاى الکترونیکى وجود داشته است. الماس هاى طبیعى همیشه به شکل بازدارنده اى براى استفاده همه جانبه گران بوده اند و یافتن سنگ هاى بزرگ با خلوص کافى نیز بسیار دشوار است. علاوه بر این هیچ دو سنگى دقیقاً شبیه هم نیستند و خواص منحصر به فرد در هر یک مى تواند مشکلاتى را در مدارهاى الکترونیکى به بار آورد. آخرین مشکل در استفاده از الماس براى کاربردهاى الکترونیکى و کامپیوترى نیز نیاز به دو نوع الماس یعنى سنگ هاى نوع n و p براى هدایت الکترونیکى بوده است.

در دستگاه هاى مجتمع باید از هر دو نوع الماس نیمه رساناى n و p، استفاده کرد اما الماس هاى نوع n به طور طبیعى وجود ندارند و الماس هاى نوع p الماس آبى، به قدرى نادرند که هیچ راه مقرون به صرفه اى براى استفاده از آنها پیدا نشده است. به هر حال الماس هاى مصنوعى این مشکلات را برطرف مى کنند. به گفته رابرت لینارس (R.Linares)، بنیان گذار کمپانى آپولو دیاموند براى مثال مى توان با افزودن ناخالصى فلز برون به الماس، نوع P یعنى الماس آبى را تولید کرد. به طور مشابه دانشمندان مى توانند با افزودن فسفر به الماس هاى بى رنگ، الماس نوع n را نیز تولید کنند. ما براى استفاده از الماس به نوع نیمه رسانا در دستگاه هاى الکترونیکى پرقدرت نیاز به ترکیبى لایه اى از این دو نوع الماس داریم. علاوه بر این با توجه به اینکه الماس هاى بى رنگ خالص در عمل بیشتر از آنکه رسانا باشند عایق هستند، مى توان لایه هایى از آنها را به این ترکیب افزود.

امروزه نیمه رساناهاى بسیارى مثل سیلیکون در گستره وسیعى از دستگاه هاى الکترونیکى به کار مى روند. اما الماس با توجه به دامنه تغییرات حرارتى و سرعت فوق العاده بیشترش، تنها در مقایسه با خلاء است که عنوان دومین نیمه رساناى برتر جهان را به خود اختصاص مى دهد. الماس با داشتن چنین ویژگى هایى و به خصوص امروز که آزمایشگاه قادر به تولید سنگ هاى خالص و ناخالص کنترل شده اند، مى تواند پایه گذار انواع سراسر نوینى از دستگاه هاى الکترونیکى پرقدرت باشد. با اینکه استفاده از الماس در صنایع الکترونیک به چند دهه دیگر واگذار شده است اما به اعتقاد لینارس این سنگ قیمتى صنایع نیمه رساناسازى را به کلى دگرگون خواهد کرد.

الماس به طور طبیعى تحت فشارهاى زیاد اعماق زمین و در زمانى طولانى شکل مى گیرد. اما در آزمایشگاه مى توان به کمک دو فرآیند مجزا در زمانى بسیار کوتاه تر الماس تولید کرد. فرآیند فشار بالا _ دما بالا (HP HT) اساساً تقلیدى است از فرآیند طبیعى شکل گیرى الماس در حالى که فرآیند رسوب گیرى بخار شیمیایى (CVD) دقیقاً خلاف آن عمل مى کند. در واقع CVD به جاى وارد کردن فشار به کربن براى تولید الماس با آزاد گذاشتن اتم هاى کربن به آنها اجازه مى دهد با ملحق شدن به یکدیگر به شکل الماس درآیند.

این دو تکنیک براى اولین بار در دهه 1950 کشف شدند. به گفته باتلر که هفده سال روى تولید الماس با استفاده از تکنیک CVD کار کرده است «از آنجا که پیشگامان تولید الماس بدون فشار بالا در دهه 1950 با تمسخر سایرین از میدان به در شدند. تکنولوژى CVD هنوز دوران کودکى اش را سپرى مى کند.» هر دو فرآیند قادرند با سرعتى خیره کننده الماس هایى با کیفیت جواهر تولید کنند اما در نهایت این فرآیند CVD است که به خاطر کنترل ساده ناخالصى و اندازه محصول براى تکنولوژى هاى الکترونیکى مناسب ترین خواهد بود.

فرآیند CVD با قرار دادن ذره بسیار کوچکى از الماس در خلأ آغاز مى شود. سپس گازهاى هیدروژن و متان به محفظه خلأ جریان مى یابند. در ادامه پلاسماى تشکیل شده باعث شکافته شدن هیدروژن به هیدروژن اتمى مى شود که با متان واکنش مى دهد تا رادیکال متیل و اتم هاى هیدروژن به وجود آیند. رادیکال متیل نیز به ذره الماس مى چسبد تا الماس بزرگ شود. رشد الماس در تکنیک CVD، فرآیندى خطى است، بنابراین تنها عوامل محدودکننده اندازه محصول در این روش بزرگى ذره ابتدایى و زمان قرار دادن آن در دستگاه است.

به گفته دیوید هلیر (D.Hellier)، رئیس بخش بازاریابى کمپانى ژمسیس، «فرآیند HP HT نیز با ذره کوچکى از الماس آغاز مى شود. هر ذره الماس در محفظه هاى رشدى به اندازه یک ماشین لباسشویى، تحت دما و فشار بسیار بالا درون محلولى از گرانیت و کاتالیزورى فلزى غوطه ور مى شود. در ادامه تحت شرایط کاملاً کنترل شده اى این الماس کوچک به تقلید از فرآیند طبیعى، مولکول به مولکول و لایه به لایه شروع به رشد مى کند.» گرچه جنرال الکتریک در تولید الماس ها به این روش پیشگام است و الماس هاى ساخته شده با تکنیک HP HT را براى مصارف صنعتى به بازار عرضه مى کرد اما تا پیش از آنکه کمپانى ژمسیس با ساده سازى این فرآیند امکان تولید نمونه هایى با کیفیت جواهر را فراهم کند، هرگز آن الماس ها به عنوان سنگ هاى قیمتى به فروش نرسیده بودند.

امروز هر دو کمپانى آپولو دیاموند و ژمسیس الماس هاى جواهرى مى فروشند. این الماس هاى «پرورشى» با قیمتى بسیار پایین تر از الماس طبیعى به فروش مى رسد. به گفته هلیر «کمپانى ژمسیس از سال 2003 الماس هاى مصنوعى را با قیمت یک چهارم تا یک پنجم قیمت نمونه طبیعى به بازار عرضه مى کند که از لحاظ رنگ، شفافیت، برش و قیراط مشابه سنگ هاى قیمتى طبیعى است. در واقع الماس هاى زینتى مصنوعى بخش کوچک و در عین حال پرسودى از صنعت الماس را تشکیل مى دهند. این الماس هاى رنگى که در مقایسه با همتاهاى بى رنگ شان فوق العاده کمیاب و در نتیجه بسیار گران بها ترند با توجه به نوع ناخالصى ها در رنگ هاى گوناگون از قرمز و صورتى گرفته تا آبى، سبز و حتى زرد روشن و نارنجى تولید مى شوند. به گفته لینارس: «گرچه آپولو دیاموند به زودى الماس هایى به رنگ آبى، صورتى و مشکى را عرضه خواهد کرد اما این کمپانى با فروش الماس هاى بى رنگ مسیر متفاوتى را در پیش گرفته است.» در واقع این الماس ها مى توانند چنان کیفیت بالایى داشته باشند که حتى ماشین هاى ساخته شده براى تشخیص سنگ هاى مصنوعى از طبیعى در تفکیک شان از یکدیگر دچار مشکل شوند، همان طور که امروزه برخى از بزرگ ترین الماس فروشان در صنعت نیز به زحمت از پس آن برمى آیند. شباهت فوق العاده نمونه هاى مصنوعى و طبیعى باعث شده است تا تاجران الماس براى تشخیص الماس هاى رنگى مصنوعى از سنگ هاى طبیعى دست به دامن آزمایشگاه هاى الماس بلژیک و دیگر نقاطى شوند که به طور سنتى عهده دار تجزیه و تحلیل و تایید الماس ها از نظر بزرگى قیراط، رنگ و شفافیت هستند. به گفته جف ون روین (J.Van Royen)، یکى از فیزیکدانان شوراى عالى الماس آنتورپ «وظیفه ما حمایت از انجمن هاى الماس با یافتن شیوه هایى براى شناسایى الماس هاى مصنوعى و دست کارى شده است و با تکنولوژى فعلى مان کاملاً مطمئن هستیم که مى توانیم از پس این کار بر بیاییم. اما با پیشرفته تر شدن تکنولوژى هاى رشد و دستکارى الماس، این تکنولوژى فعلى دیگر ابزار مطمئنى نخواهد بود.»

آزمایشگاه آنتورپ و چند تایى دیگر در سراسر جهان براى تشخیص الماس هاى مصنوعى به طور عمده از دو نوع دستگاه استفاده مى کنند. در دستگاه نوع اول با تابش نور به الماس مشخصات طیفى نور جذب یا ساطع شده تجزیه و تحلیل مى شود. اگر نشانه هایى از الماس مصنوعى مشاهده شد، آزمایشگاه دستگاه دوم را به کار مى گیرد که این دستگاه براى آشکار ساختن ساختار درونى کریستال از نور فرابنفش استفاده مى کند. به گفته ون روین «این دستگاه ها نقص هاى موجود در الماس را حتى در مقیاس میکروسکوپى یا اتمى نیز بررسى مى کنند. ما در اینجا ساختار هاى رشد الماس را بررسى مى کنیم.» در واقع الماس ها نیز درست مثل درختان داراى حلقه هاى رشدى در اطراف هسته درونى هستند. الماس هایى که در آزمایشگاه تولید یا براى تغییر رنگ دستکارى شده باشند، ساختار رشد متفاوتى از خود نشان مى دهند. بنابراین با اینکه آزمایشگاه ها با استفاده از این دستگاه ها قادر به تشخیص الماس هاى مصنوعى از طبیعى هستند اما نگرانى عمده در صنعت الماس جایى است که افراد بدون این دستگاه ها توانایى تشخیص سنگ هاى مصنوعى را نخواهند داشت. به گفته ون روین «بیشتر مشترى یا حتى جواهرفروشان قادر به بیان تفاوت این دو نمونه نیستند. با اینکه صنعت الماس هیچ مشکلى با الماس هاى مصنوعى ندارد، آنها مصرانه مى خواهند که این نمونه هاى مصنوعى به روشنى برچسبى داشته باشند تا مشترى نسبت به آنچه خریدارى مى کند کاملاً مطلع باشد.» بنا به اظهارات هلیر و لینارس هر دو کمپانى ژمسیس و آپولو دیاموند در تلاش اند تا اعتبار سنگ هاى پرورشى شان را تضمین کنند. براى مثال روى تمام الماس هاى پرورشى بزرگ تر از یک چهارم قیراط کمپانى ژمسیس، اسم کمپانى و شماره سریالى انحصارى با لیزر حک شده است. همچنین تمام سنگ هاى بزرگ تر از یک قیراط همراه با تایید نامه رسمى از آزمایشگاه جواهر شناسى اروپا عرضه مى شود. اما به اعتقاد ون روین هنوز این پرسش باقى است که آیا تمام تولید کنندگان الماس لزوماً با وجدان هم خواهند بود. به گفته وى «در پایان انتظار داریم الماس هاى مصنوعى جایگاه مخصوص به خودى در بازار را پیدا کنند.» برخى دیگر از دست اندرکاران صنعت الماس نیز دید بهترى نسبت به این سنگ هاى پرورشى دارند. به گفته مارتین راپاپورت (M.Rapaport)، رئیس گروه راپاپورت، شبکه اى از کمپانى هاى درگیر در صنعت الماس «از چشم انداز سیاست عمومى، انواع بیشتر محصول، انتخاب هاى بیشتر، قسمت هاى متنوع و رقابت یعنى بازار بهتر. در واقع این شانس منطقى است که بتوانیم در آینده اى قابل پیش بینى ابعاد صنعت الماس را دو برابر کنیم.» لینارس معتقد است سرانجام این میزان فروش سنگ هاى قیمتى است که تنها وسیله پایان بخش به این جدل خواهد بود و بازدهى هاى بزرگ در دل تکنولوژى هاى صنعتى است.

دورنماى الماس

ویژگى هاى ذاتى الماس خالص مثل نارسانایى و رسانایى الکتریکى فوق العاده و نیز عنوان سخت ترین و مقاوم ترین ماده شناخته شده در جهان، آن را تبدیل به ماده طبیعى مناسبى براى کاربرد هاى صنعتى و الکترونیکى کرده است. به گفته جیمز باتلر «در پنجاه سال آینده تحقیقات شیمیایى الماس در آزمایشگاه تحقیقاتى نیروى دریایى ایالات متحده احتمالاً منجر به ظهور لوازم الکترونیکى نوینى خواهد شد که به راحتى جاى سیلیکون به عنوان گزینه اى براى نیمه رساناها را اشغال مى کند. به عنوان برخى از کاربرد هاى عملى الماس مى توان به موارد زیر اشاره کرد:

- لوازم الکترونیکى ولتاژ و توان بالا مثل ترن هاى سریع السیر.

- دستگاه هاى فرکانس بالا مثل رادار هاى پرقدرت و ایستگاه هاى مخابراتى سلولى.

- دستگاه هاى میکرو و نانو الکترو مکانیکى مثل ساعت ها و فیلتر هاى تلفن هاى سلولى.

- محاسبات کوانتومى مثل موارد مورد نیاز در ارتباطات امن.

- آشکارساز پرتو هاى پرانرژى مثل پرتو سنج هاى پزشکى.

- اپتیک و لیزر هاى پرقدرت مثل آنچه در کابل و خطوط تلفن یا پنجره شاتل هاى فضایى به کار مى رود.

- الکترود هاى الماسى مقاوم به خوردگى که مى تواند محیط هاى آلوده را پاک کند.

کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/25:: 8:10 عصر     |     () نظر

1- نیروگاه حرارتی: از اواخر قرن نوزدهم بشر برای تولید الکتریسیته از نیروگاه های حرارتی استفاده می کند. در این نیروگاه ها ابتدا زغال سنگ مصرف می شد و بعدها فرآورده های سنگین نفتی مورد استفاده قرار گرفت. اساس کار این نیروگاه ها بر گرم کردن آب تا حالت بخار است و سپس بخارهای تولید شده توربین های تولیدکننده الکتریسیته را به حرکت در می آورند. عیب این نوع نیروگاه ها تولید گاز کربنیک فراوان و اکسیدهای ازت و گوگرد و غیره است که در جو زمین رها شده و محیط زیست را آلوده می کنند. دانشمندان بر این باورند که در اثر افزایش این گازها در جو زمین اثر گلخانه ای به وجود آمده و دمای کره زمین در حال افزایش است. در کنفرانس های متعددی که درباره همین افزایش گازها و به ویژه گرم شدن کره زمین در نقاط مختلف جهان برگزار شد (لندن، ریو دوژانیرو و همین سال گذشته در کیوتو) غالب کشورهای جهان جز ایالات متحده آمریکا موافق با کم کردن تولید این گازها بر روی کره زمین بودند و تاکنون تنها به علت مخالفت آمریکا موافقتی جهانی حاصل نشده است.

2- نیروگاه های آبی: در مناطقی از جهان که رودخانه های پر آب دارند به کمک سد آب ها را در پس ارتفاعی محدود کرده و از ریزش آب بر روی پره های توربین انرژی الکتریکی تولید می کنند. کشورهای شمال اروپا قسمت اعظم الکتریسیته خود را از آبشارها و یا سدهایی که ایجاد کرده اند به دست می آورند. در کشور فرانسه حدود 30 تا 40 درصد الکتریسیته را از همین سدهای آبی به دست می آورند. متاسفانه در کشور ما چون کوه ها لخت (بدون درخت) هستند غالب سدهای ساخته شده بر روی رودخانه ها در اثر ریزش کوه ها پر شده و بعد از مدتی غیر قابل استفاده می شوند.

3- نیروگاه های اتمی: در دهه اول و دوم قرن بیستم نظریه های نسبیت اینشتین امکان تبدیل جرم به انرژی را به بشر آموخت (فرمول مشهور اینشتین mc2=E). متاسفانه اولین کاربرد این نظریه منجر به تولید بمب های اتمی در سال 1945 توسط آمریکا شد که شهرهای هیروشیما و ناکازاکی در ژاپن را به تلی از خاک تبدیل کردند و چند صد هزار نفر افراد عادی را کشتند و تا سال های متمادی افراد باقی مانده که آلوده به مواد رادیواکتیو شده بودند به تدریج درپی سرطان های مختلف با درد و رنج فراوان از دنیا رفتند. بعد از این مرحله غیر انسانی از کاربرد فرمول اینشتین، دانشمندان راه مهار کردن بمب های اتمی را یافته و از آن پس نیروگاه های اتمی متکی بر پدیده شکست اتم های اورانیم- تبدیل بخشی از جرم آنها به انرژی- برای تولید الکتریسیته ساخته شد.

اتم های سنگین نظیر ایزوتوپ اورانیم 235 و یا ایزوتوپ پلوتونیم 239 در اثر ورود یک نوترون شکسته می شود و در اثر این شکست، 200 میلیون الکترون ولت انرژی آزاد شده و دو تکه حاصل از شکست که اتم های سبک تر از اورانیم هستند تولید می شود. اتم های به وجود آمده درپی این شکست غالباً رادیواکتیو بوده و با نشر پرتوهای پر انرژی و خطرناک و با نیمه عمر نسبتاً طولانی در طی زمان تجزیه می شوند. این پدیده را شکست اتم ها (Fision) گویند که بر روی اتم های بسیار سنگین اتفاق می افتد. در این فرایند همراه با شکست اتم، تعدادی نوترون به وجود می آید که می تواند اتم های دیگر را بشکند، لذا باید نوترون های اضافی را از درون راکتور خارج کرد و این کار به کمک میله های کنترل کننده در داخل راکتور انجام می گیرد و این عمل را مهار کردن راکتور گویند که مانع از انفجار زنجیره ای اتم های اورانیم می گردد.

از آغاز نیمه دوم قرن بیستم ساخت نیروگاه های اتمی یا برای تولید الکتریسیته و یا برای تولید رادیو عنصر پلوتونیم که در بمب اتم و هیدروژنی کاربرد دارد، شروع شد و ساخت این نیروگاه ها تا قبل از حوادث مهمی نظیر تری میل آیلند در آمریکا در سال 1979 میلادی و چرنوبیل در اتحاد جماهیر شوروی سابق در سال 1986 همچنان ادامه داشت وتعداد نیروگاه های اتمی تا سال 1990 میلادی از رقم 437 تجاوز می کرد. بعد از این دو حادثه مهم تا مدتی ساخت نیروگاه ها متوقف شد. در سال 1990 مقدار انرژی تولید شده در نیروگاه های صنعتی جهان از مرز 300 هزار مگاوات تجاوز می کرد.

ولی متاسفانه در سال های اخیر گویا حوادث فوق فراموش شده و گفت وگو درباره تاسیس نیروگاه های اتمی جدید بین دولت ها و صنعتگران از یکسو و دانشمندان و مدافعان محیط زیست آغاز شده است. بدیهی است اغلب دانشمندان و مدافعان محیط زیست مخالف با این روش تولید انرژی هستند و محاسبات آنها نشان می دهد که اگر قرار باشد تمام جهانیان از نیروگاه اتمی استفاده کنند، از یکسو احتمالاً تولید پلوتونیم از کنترل آژانس جهانی کنترل انرژی هسته ای خارج خواهد شد و امکان دارد هر دیکتاتور غیرمعقول و ناآشنا با مفاهیم علمی تعادل محیط زیست، دارای این سلاح خطرناک شود. از سوی دیگر افزایش مواد زاید این نیروگاه ها که غالباً رادیوایزوتوپ های سزیم 137 و استرانسیم 90 و پلوتونیم 239 است، سیاره زمین را مبدل به جهنمی غیر قابل سکونت خواهد کرد.

با وجود این، اخیراً ایالات متحده آمریکا مسائل فوق را فراموش کرده و برنامه ساخت نیروگاه های اتمی را مورد مطالعه قرار داده است. در کشورهای اروپایی نیز صنایع مربوطه و به ویژه شرکت های تولیدکننده برق دولت های متبوع خود را برای تاسیس نیروگاه های اتمی تحت فشار قرار داده اند. ولی خوشبختانه در این کشورها با مقاومت شدید مدافعان محیط زیست روبه رو شده اند. اما در کشورهای آسیایی، در حال حاضر 22 نیروگاه اتمی در دست ساخت است (تایوان 2- چین 4- هندوستان 8- کره جنوبی 2- ژاپن 3- کره شمالی 1- ایران 2) و در کشورهای کمونیستی سابق ده نیروگاه در حال ساخت است (اوکـراین 4- روسیه 3- اسلواکی 2- رومانی 1)

مواد زاید نیروگاه های موجود و در حال بهره برداری از 300 هزار تن در سال تجاوز می کند و تا سال 2020 که 33 نیروگاه در حال ساخت کنونی است به بهره برداری خواهند رسید، مواد زاید رادیواکتیو و خطرناک از مرز 500 هزار تن در سال تجاوز خواهد کرد. (مجله کوریه اینترناسیونال 17-11 دسامبر 2003 صفحه 12) اگر اروپایی ها و آمریکا و کانادا نیز ساخت نیروگاه های اتمی را شروع کنند، مواد زاید و رادیواکتیو جهان از حد میلیون تن در سال تجاوز خواهد کرد. باید توجه داشت که برای از بین رفتن 99 درصد رادیو اکتیویته این مواد باید حداقل 300 سال صبر کرد.

4- نیروگاه متکی بر پدیده پیوست اتم ها: از اواسط قرن بیستم دانشمندان با جدیت فراوان مشغول پژوهش و آزمایش بر روی پدیده پیوست اتم های سبک هستند. در آغاز نیمه دوم قرن بیستم کشورهای غربی (آمریکا، فرانسه و انگلستان و...) و اتحاد جماهیر شوروی، از این پدیده برای مصارف نظامی و تولید بمب هیدروژنی استفاده کرده و به علت ارزان بودن فرآورده های نفتی، کشورهای پیشرفته کمک مالی چندانی به دانشمندان برای یافتن وسیله کنترل بمب هیدروژنی نکردند و اکنون که قسمت اعظم ذخایر نفت و گاز مصرف شده، به فکر ساخت نیروگاهی براساس پدیده پیوست اتم ها افتاده اند که در آغاز به آن اشاره شد و در زیر اصول آن تشریح می شود.

الف) بمب هیدروژنی: بمب هیدروژنی در واقع یک بمب اتمی است که در مرکز آن ایزوتوپ های سنگین هیدروژن (دوتریم D و تریسیم T و یا فلز بسیار سبک لیتیم Li) را قرار داده اند. بمب اتمی به عنوان چاشنی شروع کننده واکنش است. با انفجار بمب اتمی دمایی معادل ده ها میلیون درجه (K10000000) در مرکز توده سوخت ایجاد می شود، همین دمای بالا سبب تحریک اتم های سبک شده و آنها را با هم گداخت می دهد. در اثر گداخت و یا در واقع پیوست اتم های سبک با یکدیگر انرژی بسیار زیادی تولید می شود. این است که در موقع انفجار بمب هیدروژنی دو قارچ مشاهده می شود، قارچ اول مربوط به شکست اتم های اورانیم یا پلوتونیم است و قارچ دوم مربوط به پدیده پیوست اتم های سبک با یکدیگر است که به مراتب از قارچ اول بزرگ تر و مخرب تر است. واکنشی که در خورشید اتفاق می افتد نتیجه پیوست اتم های هیدروژن با یکدیگر است، دمای درونی خورشیدها میلیون درجه است. (دمای سطح خورشید 6000 درجه است).

در مرکز خورشید از پیوست اتم های هیدروژن معمولی ایزوتوپ های دوتریم و تریسیم تولید می شود و سپس این ایزوتوپ به هم پیوسته شده و هسته اتم هلیم را به وجود می آ ورند. این واکنش ها انرژی زا هستند و در اثر واکنش اخیر 6/17میلیون الکترون ولت انرژی تولید می شود. و این واکنش ها همراه انفجار وحشتناک و مهیبی است که همواره در درون خورشید به طور زنجیره ای ادامه دارد و دلیل اینکه خورشید از هم متلاشی نمی شود اثر نیروی گرانشی بر روی جرم بی نهایت زیاد درون خورشید است. وقتی که ذخیره هیدروژن خورشید تمام شود، زمان مرگ خورشید فرا می رسد. (البته در 5 تا 6 میلیارد سال دیگر).

در مقایسه نسبی اوزان، در پدیده پیوست 4 برابر انرژی بیشتر از پدیده شکست اتم های اورانیوم تولید می شود.

ب) نیروگاه متکی بر پدیده پیوست:در این پدیده همانطور که گفته شد اتم های سبک با یکدیگر پیوست حاصل کرده و اتمی سنگین تر از خود به وجود می آورند، در واقع همان واکنشی است که در خورشید اتفاق می افتد ولی باید شرایط ایجاد آن را بدون کاربرد بمب اتمی به وجود آورد و به ویژه باید آن را تحت کنترل درآورد. از دهه 1950 تاکنون دانشمندان سعی در به وجود آوردن دمایی در حدود میلیون درجه کرده تا واکنش پیوست را به نحو متوالی در این دما نگه دارند، دستگاهی که برای این کار ساخته اند توکاماک Tokamak نام دارد. تاکنون در آزمایشگاه ها توانسته اند به مدت حداکثر 4 دقیقه این واکنش را ایجاد و کنترل کنند. در این دستگاه که در شکل نمایش داده شده است، میدان مغناطیسی بسیار شدیدی ایجاد کرده و شدت جریان الکتریکی در حدود 15 میلیون آمپر از آن عبور می کند (برق منزل شما 30 تا حداکثر 90 آمپر است). در مرکز این دستگاه اتم های سبک در اثر میدان مغناطیسی و الکتریکی، حالت پلاسما را خواهند داشت. (در روی زمین ما سه حالت از ماده را می شناسیم: جامد، مایع و بخار، ولی در داخل ستارگان یا خورشید ماده به صورت پلاسما است، یعنی در این حالت هسته اتم ها در دریایی از الکترون ها غرق اند.) در چنین حالتی اتم های سبک آنقدر تحریک و نزدیک به هم شده اند که در هم نفوذ می کنند و اتم جدیدی که هلیم است به وجود می آید. (ستارگان بسیار حجیم تر از خورشید دمای درونی بیش صدها میلیون و یا حتی میلیارد درجه است و در آنها اتم های سنگین تر نظیر کربن، ازت و اکسیژن با هم پیوست می کنند و عناصری مانند سلیسیم و گوگرد و... را به وجود می آورند .

کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/25:: 8:10 عصر     |     () نظر
با پیشرفت روز افزون علم و فناوری همواره نیاز های جدید به وسایل و دستگاه های جدید تر جهت هماهنگی همه بخشهای صنعت با این پیشرفت ، به وجود می آیند. بدین منظور شناخت و طراحی راه کارها و وسایل جدید امری است اجتناب ناپذیر.از جمله این پیشرفت ها ساخت نوع جدید و پیشرفته تری از موتورهای الکتریکی به نام استپ موتور ها یا موتورهای پله ای است که با کاهش انواع هزینه ها در صناع کم کم جای مکانیزم های پیچیده مکانیکی را خواهند گرفت.

 
با درک میدان های مغناطیسی و کشف آنکه می توان انرژی الکریکی را به انرژی مکانیکی تبدیل نمود تحولی عظیم در تاریخ بشری بوجود آمد ، بگونه ای که بشر روز به روز به تفکر و طراحی و ساخت وسایلی که بتوانند با استفاده از انرژی الکتریکی ، انرژی مکانیکی تولید نمایند روی آورد. از این رو  انواع موتور های الکتریکی به صحنه وجود آمده و همچنان سیر تکمیلی خود را طی نمودند تا به امروز که می توان برای هر نوع کاربری ، نوع خاصی از موتورها را بکار برد. اما ساخت اسپ موتور با امکاناتی که به طراحان و سازندگان ماشین آلات میدهد ، به گونه ای برجسته سبب کاهش هزینه ها در همه زمینه ها می شود. یکی از چندین مزایای بسیار زیاد این نوع الکتروموتورها تبدیل مکانیزم های بسیار پیچیده مکانیکی ، به تنها یک محرک استپی می باشد. در ادامه با این پدیده جالب آشنا تر خواهیم شد.
 

استپ موتور یا موتور پله ای
 
یک استپ موتور وسیله ای الکتریکی است چرخش زاویه ای گسسته یا پله ای دارد و با اتصال به ضربان هایی در فرکانسی خاص کار می کند. هر ضربان فرستاده شده به موتور سبب حرکت محور موتور تا زاویه ای معین می شود که این زاویه ، زاویه استپینگ (Stepping Angle) نامیده می شود.
شکل 1 ساختمان ساده شده یک استپ موتور "Bifilar" مگنت دائمی را نشان می دهد.
روتور از جنس آهنربای دائمی است و شش دندانه دارد که با فاصله های مساوی و یک در میان در قطب های N و S اطراف روتور قرار دارند.استاتور چهار قطب دارد که هر قطب دارای پیچه ای است که این پیچه از مرکز خروجی V را داراست.
 
پیچه های روی قطب های مختلف به هم وصلند بطوری که فقط پنج سیم A , B , C , D & +V   از موتور خارج می شوند.پیچه با ارسال جریان به سیم +V  و خروج آن از یکی از سیمهای دیگر فعال می شود.
سیم پیچ ها در دندانه های استاتور به روشی پیچیده می شوند به طوریکه نتایج زیر حاصل می شود :
  • اگر سیم B فعال باشد ، قطب 1 شمال و قطب 2 جنوب خواهند بود و اگر سیم A فعال باشد قطب 1 جنوب و قطب 2 شمال می شود.
 
  • اگر سیم C فعال باشد قطب 3 شمال و قطب 4
جنوب و اگر سیم D فعال باشد قطب 3 جنوب و در عوض قطب 4 شمال خواهند بود.
عملکرد استپ موتورها براساس این قانون است که وقتی قطبهای مشابه دفع می شوند ، قطبهای مخالف جذب می شوند. اگر سیم پیچ ها در توالی صحیح فعال باشند روتور در مسیر و جهتی معین خواهد چرخید.
شکل 2 نشان می دهدکه روتور هنگامی که پیچه ها با توالی داده شده در جدول 1 فعال اند چگونه می گردد.

  
  


 همانطور که در شکل 2 مشاهده می شود ، ترتیب القاهای داده شده در در جدول 1 سبب چرخش روتور در جهت عقربه های ساعت می شود.

 


 اگر توالی این القا ها معکوس شود ، جهت حرکت نیز معکوس می شود.

 
 
 


 اگر حتی همه القا ها متوقف شده و هیچ جریانی به موتور وارد نشود ، به علت وجود آهنرباهای دائمی در روتور بازهم مقداری جاذبه میان قطب ها و دندانه ها وجود دارد. از این رو حتی هنگامی هم که هیچ تغذیه ای به موتور متصل نیست ، بازهم قدری ((گشتاور نگه دارنده)) در  موتور باقی می ماند.
از شکل 2 می توان مشاهده نمود که موتور زاویه استپینگ یا زاویه مرحله 30 درجه دارد و برای کامل کردن یک چرخه به 12 استپ یا مرحله نیاز دارد. تعداد مرحله ها در هر دور در یک موتور استپی با اضافه کردن دندانه های بیشتر روی روتور می تواند افزایش یابد و با اضافه کردن دندانه هایی به دندانه های استاتور ، زاویه استپینگ یا زاویه طی مرحله یک موتور استپی را می توان تا حد 1.8 درجه کوچک کرد به طوری که برای طی یک چرخه دویست مرحله نیاز باشد.
برنامه القای پیچه ها در شکل 2 به القای تک فاز معروف است ; از آنجا که در هر زمان فقط یکی از چهار پیچه فعال است.
 
در هر مرحله دندانه های روتور دقیقا رد مقابل دندانه های فعال استاتور قرار می گیرند. با این حال راه اندازی موتور با دو پیچه حامل جریان در یک زمان امری ممکن است (القای دو فازی). در این حالت دندانه های روتور خود را در میان دوتا از دندانه های فعال استاتور قرار می دهند. جدول 2 برنامه کاری و موقعیت روتور را برای القای دو فاز و تک فاز نشان می دهد.توجه داشته باشید که زاویه مرحله یا همان Stepping Angle برای دو نوع القا یکی است بجز اینکه موقعیت های روتور با نصف زاویه مرحله تعیین می شوند.
اگر القای تک فاز و دو فاز با هم ترکیب شوند ، یک حالت نیم مرحله (Half Step mode) حاصل می شود. در این حالت تعداد مراحل یا استپ ها در هر چرخه دو برابر است ; به طوری که اگر موتوری در حالت مرحله کامل یا Full – Step برای کامل کردن چرخه به دویست دور نیاز داشته باشد ، در حالت نیم مرحله یا Half – Step به چهارصد دور برای تکمیل آن نیاز دارد. جدول 3 توالی کارکرد برای حالت نیم مرحله نشان می دهد.

 
 
 


استپ موتوری که در بالا شرح داده شد از دو پیچه با در مقابل هم قرار دادن مگنت های همنام در هر قطب استفاده می کند. به این دلیل است که این نوع ، استپ موتور "Bifilar" نامیده می شود.

نتیجه گیری

کارایی و امکانات یک استپ موتور بسیار بیشتر از انواع دیگر الکترو موتورها می باشد. بدین لحاظ که بسیاری مکانیزم ها و حالات مختلف چرخش را می توان از آنها گرفت و همچنین این که کنترل این موتور ها بسیار آسان تر از سایرین است به طوری که عمدتا به وسایل کنترل سرعت اضافی از قبیل ترمز های الکتریکی و مکانیکی نیازی ندارند.
پس بر ماست تا با افزایش دانش خود در مورد این نوع کارامد از موتورهای الکتریکی سعی در استفاده هرچه بیشتر از امکانات آنها کنیم.

کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/21:: 8:27 عصر     |     () نظر

 منبع تغذیه ای که جریانش بیشتر باشد میتواند کار بیشتری انجام دهد یا منبع تغذیه ای که ولتاژش بیشتر باشد ؟

گفتیم که ولتاژ باعث حرکت الکترونها میشود که حرکت الکترونها همان جریان میباشد .

در منابع تغذیه یک مقاومت داخلی وجود دارد که باعث میشود در هنگام تغذیه نمودن یک مصرف کننده ولتاژ منبع تغذیه کاهش یابد پس قدرت یک منبع تغذیه به دو عامل بستگی دارد یکی ولتاژش و دیگری مقاومت داخلی اش .

حالا میخواهیم ببینیم که چگونه برای یک منبع تغذیه جریان تعیین میکنند ؟

وقتی میگویند مثلاً : یک باطری یا یک آدابتور 12 ولت و 2 آمپر است یعنی اینکه اگر جریان 2 آمپر از این منبع تغذیه دریافت کنیم کاهش ولتاژش در حدود 5 - 10 درصد است که این مقدار کاهش ولتاژ تاثیر چندانی بر روی مدارات ندارد حالا اگر بیشتر از این مقدار جریان از منبع تغذیه بگیریم (مصرف کننده های بیشتری به آن وصل کنیم ) این کار دو پی آمد دارد یکی اینکه ولتاژ مورد نیاز را به مانمی دهد (ولتاژش کاهش میابد) و دوم اینکه به خود منبع تغذیه آسیب وارد میشود .

معمولاً ولتاژ منابع تغذیه را کمی بیشتر انتخاب میکنند که در حالت کار معمولی که جریان متوسطی از آن گرفته میشود ولتاژش به ولتاژ اصلی برسد مثلاً یک منبع تغذیه را که ما به عنوان منبع 12 ولتی خریداری میکنیم در حالتی که هیچ مصرف کننده ای به آن وصل نیست اگر با ولتمتر ولتاژش را اندازه گیری کنیم حدوداً 14 ولت را نشان میدهد .

چرا در حالتی که منبع به هیچ مصرف کننده ای وصل نیست مقاومت داخلی ولتاژ را افت نمیدهد ؟

چون که مقدار ولتاژی را که مقاومت داخلی افت میدهد به مقدار جریان عبوری از منبع تغذیه بستگی دارد که در این حالت چون جریان صفر است افت ولتاژی هم وجود ندارد .

نتیجه گیری کلی :

هر منبع تغذیه دو کمیت دارد ، یکی ولتاژ و دیگری قابلیت جریان دهی (حداکثر جریان مجاز) که بستگی به مقاومت داخلی اش دارد پس قدرت کلی منبع تغذیه به این دو کمیت وابسته است لذا برای تعیین قدرت یک منبع کمیت سومی نیز بوجود می آید که توان نام دارد و واحد آن وات (W) است که از حاصلضرب جریان و ولتاژ بدست می آید یعنی توان یک منبع 12 ولتی 2 آمپر 24=12*2 وات است که نشان دهنده قدرت آن میباشد .

هر چه توان یک منبع بیشتر باشد حجم و وزن آن نیز بیشتر میشود . فرق باطری ماشین با 8 عدد باطری 1.5 ولتی سری(باطری قلمی) در این است که اگر با 8 عدد باطری 1.5 ولتی بتوانیم حداکثر 2 لامپ 12 ولتی را روشن کنیم با باطری ماشین دست کم 50 عدد از همان لامپ را میتوان هم زمان روشن کرد زیرا مقاومت داخلی باطری ماشین خیلی کم است و وقتی جریان زیادی از آن دریافت میکنیم کاهش ولتاژش کم است ولی در باطری قلمی وقتی بیشتر از 2 یا 3 لامپ به آن وصل میکنیم ولتاژش کاهش یافته و نور لامپها کم میشود.

برای محاسبه مقدار افت ولتاژ از همان رابطه اهم استفاده میکنیم

V=R*I

طبق این رابطه مقدار افت ولتاژ دو سر مقاومت با تغییر جریان تغییر میکند.

برای هر عنصری که در یک مدار الکتریکی وجود دارد میتوان توان را محاسبه کرد بطور کلی دو نوع توان در یک مدار وجود دارد 1- توان تولیدی که توسط منبع تغذیه تولید میشود 2- توان مصرفی که توسط مصرف کننده ها مصرف میشود ، در یک مدار همیشه توان تولیدی با توان مصرفی برابر است ((در صورت صرفنظر کردن از تلفات سیمهای رابط))

توانی که یک مقاومت مصرف میکند به جریان عبوری از آن بستگی دارد که طبق رابطه زیر محاسبه میشود :

W=R*I^2

بطور کلی سه فرمول برای توان میتوان نوشت :

W=V^2/R

W= V*I

W=R*I^2


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/15:: 8:40 عصر     |     () نظر

 تاریخچه

در سال 1802 پتروف (V.P.Petrof) کشف کرد که اگر دو تکه زغال چوب را به قطب های باتری بزرگی وصل کنیم و آنها را به هم تماس دهیم و سپس کمی از هم جدا کنیم شعله روشنی بین دو تکه زغال دیده می شود. و انتهای آنها که از شدت گرما سفید شده است نور خیره کننده ای گسیل می دارد. قوس الکتریکی هفت سال بعد دیوی (H.Davy) فیزیکدان انگلیسی این پدیده را مشاهده نمود و پیشنهاد کرد که این پدیده به احترام ولتا قوس ولتا نامیده شود.

آزمایش ساده

اگر بخواهیم در یک روش ساده ای ایجاد قوس الکتریکی را نشان دهیم باید دو تکه کربن را روی گیره قابل تنظیم سوار نمود (بهتر است که به جای زغال چوب معمولی میله خاصی که از کربن قوس ساخته می شود و با فشار دادن مخلوط گرافیت ، کربن سیاه و مواد چسبنده به وجود می آیند، استفاده شود).

چشمه جریان می تواند برق شهر هم باشد برای اجتناب ازاینکه در لحظه تماس تکه های کربن مدار کوتاه ایجاد شود باید رئوستایی به طور متوالی به قوس وصل شود.

معمولا برق شهر با جریان متناوب تغذیه می شود. ولی در صورتی که جریان مستقیم از آن عبور کند قوس پایدارتر است به طوری که یکی از الکترودها همیشه مثبت «آند)و دیگری همواره منفی «کاتد)است.

ماهیت قوس الکتریکی

در قوس الکتریکی الکترودها در اثر حرارت سفید رنگ می شود. ستونی از گاز ملتهب رسانای خوب الکتریکی بین الکترودها وجود دارد. در قوس معمولی این ستون نوری بسیار کمتر از نور تکه های کربن سفید شده از آزمایش‌های مربوط به گرما گسیل می کنند. چون الکترود مثبت دمایش از الکترود منفی بیشتر است زود تر از بین می رود. در نتیجه تصعید شدید کربن صورت گرفته و در آن الکترود (الکترود مثبت) فرورفتگی به وجود می آید که به دهانه مثبت معروف است و داغ ترین نقطه الکترودهاست.

دمای دهانه در هوا و در فشار جو به 4000 درجه سانتیگراد می رسد. در لامپ های قوسی سازوکارهای منظم و خود کار خاصی برای نزدیک کردن تکه های کربن با سرعت یکنواخت وقتی با سوختن از بین می روند، مورد استفاده قرار می گیرند. برای اینکه سایش و خوردگی الکترود مثبت به خاطر دمای بالایش بیشتر است،برای همین همیشه الکترود کربن مثبت کلفت تر از الکترود منفی اختیار می شود.

دماهای بالا در قوس الکتریکی

قوس الکتریکی می تواند بین الکترودهای فلزی ساخته شده از آهن ، مس و غیره نیز بگیرد. در این حالت الکترودها به میزان زیادی ذوب و تبخیر می شوند و این عمل به مقدار زیادی آزمایش‌های مربوط به گرما احتیاج دارد. به این دلیل دمای مرکز الکترود فلزی معمولا کمتر از دمای الکترود کربنی است (2000 تا 2500 درجه سانتیگراد).

قوسی که بین الکترودهای کربن در گاز فشرده ای قرار می گیرد (حدود 20atm) بالا رفتن دمای مرکز مثبت تا 5900 درجه سانتیگراد یعنی دما روی سطح خورشید را ممکن ساخته است. معلوم شده است که کربن در این حالت ذوب می شود. دمای باز هم بالاتری را می توان در ستونی از گاز و بخاری که از آن تخلیه الکتریکی می گذرد، به دست آورد.

بمباران شدید این گاز و بخار با الکترون ها و یون هایی که با میدان الکتریکی قوس شتاب گرفته اند دمای ستون گاز را 6000 تا 7000 درجه سانتیگراد می رساند. به این دلیل تقریبا تمام مواد شناخته شده در ستون قوس الکتریکی ذوب و تبخیر می شوند. و بسیاری از واکنش های شیمیایی که در دماهای پایین انجام شدنی نیستند، با قوس الکتریکی امکان پذیر می شوند. مثلا میله های چینی دیر گداز در شعله قوس به سهولت ذوب می شود.

چگونگی ایجاد تخلیه قوس الکتریکی

برای ایجاد تخلیه قوس الکتریکی به ولتاژ زیادی احتیاج نیست با ولتاژ 40 تا 45 ولت بین الکترود ها می توان قوس را به وجود آورد. از طرف دیگر جریان داخل قوس زیاد است. مثلا حتی در قوس کوچک جریان به 5 آمپر می رسد، در حالیکه در قوس های بزرگ که در مقیاس صنعتی به کار می روند جریان به صدها آمپر بالغ می شود. این به این معنا ست که مقاومت قوس پایین است و از این رو ستون گاز تابان رسانای الکتریکی خوبی است.

یونیزاسیون گاز با انرژی قوس الکتریکی

یونش شدید گاز با قوس الکتریکی به آن دلیل امکان پذیر است که کاتد قوس الکتریکی تعداد زیادی الکترون گسیل می داد. این الکترون ها با برخورد با گاز داخل شکاف تخلیه گازی آن را یونیزه می کنند. گسیل الکترونی شدید از کاتد از آنجا ممکن می شود که خود کاتد تا دمای بسیار بالایی گرم می شود (بسته به ماده از 2200 تا 3500). وقتی که الکترودهای قوس در ابتدا تماس داده شوند تقریباً تمام گرمای ژول که از الکترود ها می گذرد در ناحیه تماس که مقاومت بسیار دارد آزاد می شود.

به این دلیل انتهای الکترودها به شدت گرم می شوند که برای گیراندن قوس به هنگام جداکردن آنها کافی است آن وقت کاتد قوس توسط جریانی که از قوس می گذرد، در حالت التهاب می ماند. در این فرایند بمباران کاتد توسط یون هایی که به آن برخورد می کند نقش اصلی را ایفا می کند.

مشخصه جریان ولتاژ قوس الکتریکی

یعنی بستگی جریان الکتریکی در قوس الکتریکی به ولتاژ بین الکترودها ، ویژگی خاصی دارد. در فلزات و الکترولیت ها جریان متناوب با ولتاژ افزایش می یابد «قانون اهم). در صورتیکه برای رسانش القایی گازها جریان ابتدا با ولتاژ زیاد می شود، سپس اشباع شده و مستقل از ولتاژ است.

بنابر این افزایش جریان در تخلیه قوسی به اندازه مقاومت در شکاف بین الکترودها و ولتاژ بین آنها منجر می شود. برای اینکه تابانی قوس پایدار بماند رئوستا یا مقاومت الکتریکی قوی دیگری را باید به طور متوالی به آن بست.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/15:: 8:39 عصر     |     () نظر
<      1   2   3   4   5   >>   >