سفارش تبلیغ
صبا ویژن
با برادریِ خدایی است که [درخت] برادری به بار می نشیند . [امام علی علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

برای اولین بار میدان مغناطیسی یک ستاره نوترونی به شکل مستقیم تعیین شد

با استفاده از رصدخانه پرتو X آزانس فضایی اروپا موسوم به XMM-Newton ، اخترشناسان اروپایی موفق شدند برای اولین بار و بدون واسطه میدان مغناطیسی یک ستاره نوترونی را مورد سنجش قرار دهند و دید دقیق تری نسبت به این موجودات راز آلود کیهان به دست آورند.

ستاره های نوترونی اجرامی بسیار چگالند . این ستاره ها با جرمی معادل خورشید در کره ای به قطر 20 تا 30 کیلومتر فشرده می شوند و جرمی با چگالی بسیار بالا را تولید می کنند. ستاره های نوترونی حاصل انفجارهای ابرنواختری است. پس از آنکه لایه های ستاره در اثر انفجاری مهیب در فضا پراکنده شد بقایای ستاره اصلی به شکل قلبی چگال باقی می ماند و ستاره نوترونی را تشکیل می دهد ستاره ای که با آهنگی غیرقابل تصور به دور خود می چرخد.

این گونه اجرام اگرچه خانواده ای آشنا ازاجرام کیهانی به حساب می ایند اما به شکل فردی و تک تک اطلاع اندکی از آنها در دست داریم.این اجرام در هنگام تولد دمای بسیار بالایی دارند و تابش قوی از خود ساطع می کنند اما پس از گذشت زمان با سرعت حرارات خود را از دست می دهند و به همین دلیل تابشهای قوی خود نظیر تابش در محدوده پرتو X را از دست داده و در طول موجهای رادیویی به تابش می پردازند و به همین دلیل است که برای بررسی آنها باید از این طول موجها استفاده کرد. تنها تعداد اندکی از این اجرام تابشهایی در طول موج X نشان می دهند.

یکی از این موارد ستاره ای نوترونی موسوم به 1 E1207.4-5209 است که در خلال طولانی ترین عکسبرداری رصدخانه XMM-Newton که 72 ساعت به طول انجامید آشکار شد.با کمک این تصویر برداری اخترشناسان اروپایی موفق شدند برای اولین بار به طور مستقیم به اندازه گیری میدان مغناطیسی این ستاره بپردازند این در حالیست که پیش از این تنها با کمک روشهای غیر مستقیم نظیر استفاده از نظریات شکل گیری ستاره های پرجرم و یا بررسی آهنگ کاهش دوران ستاره نوترونی (که با کمک بررسی داده های رادیویی امکان پذیر می شد) این میدان مغناطیسی مورد محاسبه قرار می گرفت . اما این بار اخترشناسان توانستند با رصد تابش پرتو X یک ستاره نوترونی این میدان را مستقیما ندازه گیری کنند تابش پرتو X پیش از آنکه در فضا منتشر شود از درون میدان مغناطیسی ستاره نوترونی عبور می کند و این میدان اثر انگشت خود را بر روی این پرتو باقی می گذارد. با بررسی پرتوهای دریافت شده می توان میدان را شناسایی کرد . اما نکته هیجان انگیز در خصوص این ستاره نوترونی جای دیگری بود میدان مغناطیسی که به روش مستقیم مورد اندازه گیری قرار گرفت 30 برابر ضعیف تر از میدانی بود که روشهای غیر مستقیم اعلام می کرد ند و این پرسشی تاز ه را مطرح می کرد منشا این اختلاف چیست.

در مدلهای رایج اندازه گیری میدان مغناطیسی ستاره های نوترونی فرض می شود که کاهش سرعت ستاره تنها در اثر میدان مغناطیسی ستاره و واکنش ان با محیط اطراف است د حالیکه به نظر می رسد، حداقل در مورد 1 E1207.4-5209 عامل دیگری نیز در کاهش سرعت ستاره نقش ایفا می کند و آن قرصی از بقایای انفجار ابرنواختری است که در اطراف ستاره نوترونی باقی مانده است.

حال این سوال مطرح است که آیا این مورد تنها یک استثنا و گونه جدیدی از ستاره های نوترونی است و یا نمونه ای عمومی از این خانواده از اجرام آسمانی است. بررسیهای بعدی باید پاسخگوی این سوال باشد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:22 عصر     |     () نظر

 مادون در لغت به معنای زیر دست و قرمز به معنای هر چه به رنگ خون باشد، است. پس میتوان گفت که مادون قرمز اشعه بسیار ریز و قرمز رنگ است.

اطلاعات اولیه

کشف هرسل اولن گام در ایجاد پدیده‌ای که ما آن را طیف الکترومغناطیسی مینامیم. نور مرئی و پرتوهای مادون قرمز دو نمونه اشکال فراوانی از انرژی هستند که توسط تمام اجسام موجود در زمین و اجرام آسمانی تابانده میشوند. مادون قرمز در طیف الکترومغناطیسی دارای محدوده طول موجی بین 0.78 تا 1000 میکرو متر است. تنها با مطالعه این تشعشعات است که میتوانیم اجرام آسمانی را تشخیص و تمیز دهیم و تصویری کامل از چگونگی ایجاد جهان و تغییرات آن بدست آوریم. در سال 1800 سر ویلیام هرشل یک نمونه نامرئی از تشعشعات را کشف کرد که این نمونه دقیقا زیر بخش قرمز طیف مرئی قرار داشت. او این شکل از تشعشعات را مادون قرمز نامید.

سیر تحولی و رشد

Greathouse و همکارانش طی مطالعه‌ای تاثیر لیزر مادون قرمز را به انتقال عصبی ، عصب رادیال بررسی کردند. زمان تاخیر ، دامنه پتانسیل عمل و دما ، متغیرهای مورد آزمایش مشاهده نشد.Lynn Snyder و همکارانش اثر لیزر کم توان هلیوم - نئون را بر زمان تاخیر شاخه حسی عصب رادیال در دو گروه لیزر و پلاسبو بررسی نمودند و مشاهده کردند که در گروه لیزر ، افزایش معنی دارا در زمان تاخیر حسی پس از بکارگیری لیزر ایجاد گردیده است.

Bas Ford و همکارانش طی مطالعه‌ای اثر لیزر کم توان هلیوم - نئون را بر شاخه حسی اعصاب رادیال و مدین بررسی کردند. هیچ اختلاف معنی داری در دامنه پتانسیل عمل ، زمان تاخیر و دما ساعد بعد از بکارگیری لیزر مشاهده نشد.Baxter و همکارانش افزایش معنی دار در زمان تاخیر عصب مدین بعد از بکارگیری لیزر گرارش کردند. Low و همکارانش کاهش دما را به دنبال تابش لیزر کم توان مادون قرمز دیدند.

نتایج اشعه مادون قرمز

گرمایی که ما از خورشید یا از یک محیط گرم احساس میکنیم، همان تشعشعات مادون قرمز یا به عبارتی انرژی گرمایی است. حتی اجسامی ‌که فکر میکنیم خیلی سرد هستند، نیز از خود انرژی گرمایی منتشر میسازند (یخ و بدن انسان). سنجش و ارزیابی انرژی مادون قرمز ساطع شده از اجرام نجومی ‌به علت اینکه بیشترین جذب را در اتمسفر زمین دارند مشکل است. بنابراین بیشتر ستاره شناسان برای مطالعه انتشار گرما از این اجرام از تلسکوپهای فضایی استفاده میکنند.

مادون قرمز در نجوم

تلسکوپها و آشکارسازهایی که توسط ستاره شناسان مورد استفاده قرار میگیرند نیز از خودشان انرژی گرمایی منتشر میسازند. بنابراین برای به حداقل رساندن این تاثیرات نامطلوب و برای اینکه بتوان حتی تشعشعات ضعیف آسمانی را هم آشکار ساخت، اخترشناسان معمولا تلسکوپها و تجهیزات خود را به درجه حرارتی نزدیک به 450?F ، یعنی درجه حرارتی حدود صفر مطلق ، میرسانند. مثلا در یک ناحیه پرستاره ، نقاطی که توسط نور مرئی قابل رویت نیستند، با استفاده از تشعشعات مادون قرمز بخوبی نشان داده میشود. همچنین مادون قرمز میتواند چند کانون داغ و متراکم را همره با ابرهایی از گاز و غبار نشان دهد. این کانونها شامل مناطق پرستاره‌ای هستند که در واقع میتوان آنها را محل تولد ستاره‌ای جدید دانست. با وجود این ابرها ، رویت ستاره‌های جدید با استفاده از نور مرئی به سختی امکانپذیر است.

اما انتشار گرما باعث آشکار شدن آنها در تصاویر مادون قرمز میشود. اختر شناسان با استفاده از طول موجهای بلند مادون قرمز میتوانند به مطالعه توزیع غبار در مراکزی که محل شکل گیری ستاره‌ها هستند، بپردازند. با استفاده از طول موجهای کوتاه میتوان شکافی در میان گازها و غبارهای تیره و تاریک ایجاد کرد تا بتوان نحوه شکل گیری ستاره‌های جدید را مورد مطالعه قرار داد. فضای بین ستاره‌ای در کهکشان راه شیری ما نیز از توده‌های عظیم گاز و غبار تشکیل شده است. این فضاهای بین ستاره‌ای یا از انفجارهای شدید نواخترها ناشی شده‌اند و یا از متلاشی شدن تدریجی لایه‌های خارجی ستاره‌هایی جدید از آن شکل میگیرند. ابرهای بین ستاره‌ای که حاوی گاز و غبار هستند، در طول موجهای بلند مادون قرمز خیلی بهتر آشکار میشوند (100 برابر بیشتر از نور مرئی).

اخترشناسان برای دیدن ستاره‌های جدید که توسط این ابرها احاطه شده‌اند، معمولا از طول موجهای کوتاه مادون قرمز برای نفوذ در ابرهای تاریک استفاده میکنند. اخترشناسان با استفاده از اطلاعات بدست آمده از ماهوارهای نجومی ‌مجهز به مادون قرمز صفحات دیسک مانندی از غبار را کشف کردند که اطراف ستاره‌ها را احاطه کرده‌اند. این صفحات احتمالا حاوی مواد خامی ‌هستند که تشکیل دهنده منظومه‌های شمسی هستند. وجود آنها خود گویای این است که سیاره‌ها در حال گردش حول ستاره‌ها هستند.

مادون قرمز در پزشکی

اگر نگاه دقیق و علمی ‌به یک طیف الکترومغناطیسی بیندازیم، میبینیم که از یک طرف طیف تا سوی دیگر آن ، انواع تشعشعات و پرتوها بر اساس طول موج و فرکانس‌های مختلف قرار دارند، از آن جمله میتوان به تشعشعات گاما ، اشعه ایکس ، ماورای بنفش ، نور مرئی ، مادون قرمز و امواج رادیویی اشاره کرد. هر کدام از این پرتوها و تشعشعات همگام با پیشرفت بشر ، به نوبه خود چالش‌هایی را در زمینه‌های علمی ‌پدید آورده‌اند که در اینجا علاوه بر کاربرد مادون قرمز در شاخه ستاره شناسی ، اشاره‌ای به کارآیی چشمگیری این پرتو در رشته پزشکی خواهیم داشت.

کاربرد درمانی مادون قرمز

بکار بردن گرما یکی از متداولترین روشهای درمان فیزیکی است. از موارد استعمال درمانی مادون قرمز موارد زیر را میتوان ذکر کرد.

تسکین درد

با وجود حرارت ملایم ، کاهش درد به احتمال زیاد بواسطه اثر تسکینی بر روی پایانه‌های عصبی ، حسی ، سطحی است. همچنین به علت بالا رفتن جریان خون و متعاقب آن متفرق ساختن متابولیتها و مواد دردزای تجمع در بافتها ، درد کاهش مییابد.

استراحت ماهیچه

تابش این اشعه راه مناسبی برای درمان اسپاسم و دستیابی به استراحت عضلانی میباشد.

افزایش خون رسانی

در درمان زخمهای سطحی و عفونتهای پوستی ، برای اینکه فرآیند ترمیم به خوبی انجام گیرد، باید به مقدار کافی خون به ناحیه مورد نظر برسد و در صورت وجود عفونت نیز افزایش گردش خون سبب افزایش تعداد گلبولهای سفید و کمک به نابودی باکتریها میکند. از این پرتو میتوان برای درمان مفصل آرتوریتی و ضایعات التهابی نیز استفاده کرد.

کاربرد تشخیصی مادون قرمز

از مهمترین کابردهای تشخیصی آن میتوان توموگرافی را نام برد. اصطلاح ترموگرافی به عمل ثبت و تفسیر تغییراتی که در درجه حرارت سطح پوست بدن رخ میدهد، اطلاق میشود. تصویر حاصل از این روش که توموگرام نامیده میشود، بخش الگوی حرارتی سطح بدن را نشان میدهد. در توموگرافی ، آشکار ساز ، تشعشع حرارتی دریافت شده توسط دوربین را به یک سیگنال الکترونیکی تبدیل میکند و سپس آن را علاوه بر تقویت بیشتر ، پردازش میکند تا اینکه یک صفحه کاتودیک مثل مونیتور تلویزیون آشکار شود.

تصاویر بدست آمده به صورت سایه‌های خاکستری رنگ میباشند، بدین معنی که سطوح سردتر به صورت سایه‌های خاکستری روشن دیده میشوند و در نوع رنگی آن نیز نواحی گرم ، رنگ قرمز و نواحی سرد ، رنگ روشن خواهند داشت. درجه حرارت پوست بدن در نتیجه فرآیندهای فیزیکی ، فیزیولوژیک طبیعی یا بیماری تغییر میکند. از این خاصیت تغییر گرمایی در عضوی خاص یا در سطح بدن برای آشکارسازی یک بیماری استفاده میشود که مهمترین آنها به قرار زیر است.

- بیماری پستان : وسیع ترین جنبه کاربردی توموگرافی در آشکار سازی سرطانهای پستانی است.

زیرا روشی کاملا مطمئن و بدون آزار است.

از پرتوهای یونیزان استفاده نمیشود.

روشی کاملا سریع ، راحت و ارزان است.

به دلیل بی ضرر بودن از قابلیت تکراری بسیار زیادی برخوردار است.

کاربرد ترموگرافی در مامائی

چون جفت از فعالیت بیولوژیکی زیادی برخوردار است. درجه حرارت حاصله در این محل بطور قابل ملاحظه‌ای از بافتهای اطراف بیشتر است. پس میتوان از توموگرافی برای تعیین محل جفت استفاده کرد.

ضررهای مادون قرمز

از طرف دیگر خطرهایی نیز در استفاده از مادون قرمز وجود دارد که میتوان به سوختگی الکتریکی (در اثر اتصال بدن به مدارات الکتریکی دستگاه) سر درد ، تولید ضعیف در بیمار و آسیب به چشمها در اثر تابش مستقیم پرتو اشاره کرد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/4/2:: 6:22 عصر     |     () نظر

آیا ایرانیان مخترع پیل الکتریکی بوده اند؟

تا چند سال پیش همه تصور میکردند که پیل الکتریکی را نخستین بار دانشمند ایتالیایی لوییجی گالوانی در سال 1786 اختراع کرد.گالوانی از قرار دادن دو فلز در آب نمک جریان برق بدست آورد. چقدر مایه تعجب است وقتی میبینیم که بر حسب تصادف ،گالوانی هم برای ساختن پیل همان فلزهایی را استفاده کرد که 1800 سال پیش از وی ایرانیان برای ساختن پیل بکار برده بودند.

پیل مورد استفاده ایرانیان در قریه ای در اطراف بغداد به دست آمده است.باستان شناسانی که در آثار تمدن اشکانیان حفاری میکردند در کلبه یک کاهن یا کیمیاگر ایرانی تعداد زیادی از این پیلها به دست آوردند. باید در نظر داشت که در زمان فرمانروایی اشکانیان که از 250 سال قبل از میلاد مسیح تا 226 سال بعد از میلاد ادامه داشت قسمت مهمی از کشور فعلی عراق و منجمله نواحی بغداد جز امپراطوری ایران محسوب می شد.

برای نخستین بار یک باستانشناس آلمانی به نام ویلهلم کونیک یک پیل الکتریکی اشکانیان را 20 سال پیش در مرز عراق و ایران کشف کرد و هنگامی که آن را به موزه برلین برد مشاهده کرد که دوستانش نیر قطعات شکسته و خورد شده نظیر این پیل را پیش تر به موزه آورده اند. باستان شناس آلمانی پس از مدتی حدس زد که شاید این جسم عجیب یک پیل الکتریکی بوده است ولی دوستانش در این مورد تردید داشتند تا آنکه او پس از سالیان دراز تحقیق عاقبت موفق شد در خرابه های شهر سلوکیه متعلق به اشکانیان آلات دیگری کشف کند که حدس قبلی او را تایید نمود.

این دانشمند در حفاری های خود مقدار زیادی از این پیلها را پیدا کرد که به وسیله میله های برنزی به یکدیگر متصل بودند و در آخر فقط دو سیم از ترکیب آنها بوجود آمده بود و سر این دو سیم به دستگاه دیگری فرو رفته بود. کونیک مشاهدات خود را در کتابی منتشر ساخت.تا آنکه افکارش در سراسر جهان پخش شد و پس از آزمایشهای فراوانی که در این مورد به عمل آمد ، سرانجام چندی پیش یک مهندس امریکایی به نام ویلاردگری ثابت کرد که این دستگاه عجیب را اشکانیان برای آب دادن فلزات بخصوص طلا و نقره بکار می برده اند.

گری در گزارش خود می نویسد:«اشکانیان از اتصال این پیلها به یکدیگر مقدار قابل توجهی نیروی برق بدست می آوردند و آن را به وسیله دو سیم وارد دستگاه آبکاری کرده و با استفاده از املاح طلا و نقره ، دستبند ها و زینت آلات خود را آب طلا و نقره میدادند که امروز گالوانو پلاستی یا آبکاری الکتریکی می نامند.»

در آن زمان کیمیاگران و جواهرسازان باستانی که به اینکار می پرداختند ساختمان پیل را نیز مانند سایر معلومات خویش به عنوان یک راز مگو تلقی کرده و جز به اهل فن به کسی ابراز نمی داشتند و در نتیجه از این اختراع جز کاهنها و کیمیاگران ، دیگران اطلاع نداشتند.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/25:: 8:15 عصر     |     () نظر
مقدمه

درسالهای اولیه هارمونیکها در صنایع چندان رایج نبودند.به خاطر مصرف کننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم کنندها وروشن کننده های ملتهب شونده تا درجه سفیدی و ..... این بارهای خطی جریان سینوسی ای در فرکانسی برابر با فرکانس ولتاژ می کشند. بنابراین با این تجهیزات اداره کل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الکترونیک صنعتی در کاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شکل موج بار غیر سینوسی از شکل موج ولتاژ سینوسی رسم می کنند (شکل موج جریان غیر سینوسی).

پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یکسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شکل موج جریان را تخریب می کنند. در عوض این شکل موج جریان شکل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شکل موج  در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملکرد هارمونیک ها و راه کاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.


اساس هارمونیک ها :

اصولا هارمونیک ها آلوده سازی شکل موج را در اشکال سینوسی آنها نشان می دهند. ولی فقط در مضارب فرکانس اصلی . تخریب شکل موج را می توان در فرکانس های مختلف (مضارب فرکانس اصلی) بعنوان یک نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل کرد. در حال حاضر هارمونیکهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فرکانس های مختلف در سامانه های الکتریکی موجودند که مستقیما تجهیزات سامانه الکتریکی را متاثر می سازند. در معنایی وسیعتر هارمونیکهای زوج و مرتبه 3 هریک تلاش می کنند که دیگری را خنثی نمایند. ولی در مدت زمانی که بار نا متعادل است این هارمونیک های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیک های فرد اول مانند هارمونیک پنجم ، هفتم ، یازدهم ، سیزدهم و .... عملکرد این تجهیزات الکتریکی را تحت تاثیر قرار می دهند. برای فهم بهتر تاثیر هارمونیک ها ، شکل زیر تاثیر تخریب هارمونیک پنجم بر شکل موج سینوسی را نشان می دهد :

 
 

هارمونیک های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الکتریکی دارند. ولی عموما بیشتر تجهیزات الکتریکی به هارمونیکهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیکهای ولتاژ متاثر می شوند. به طور عمده هارمونیکهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبکه های توزیع می شوند. هارمونیکهای جریان وابسته به بار اند ، در حالی که سطح هارمونیکهای ولتاژ به پایداری سامانه تغذیه و هارمونیکهای بار (هارمونیکهای جریان) بستگی دارد. عموما هارمونیک های ولتاژ از هارمونیک های جریان کمتر خواهند بود.    
 

تشدید:

اساسا تشدید سلفی – خازنی در همه انواع بارها مشاهده می شود. ولی اگر هارمونیک ها در شبکه توضیع شایع نباشند تاثیر تشدید فرونشانده می شود.
در هر ترکیب سلفی – خازنی چه در حالت سری و چه در حالت موازی ، در فرکانسی خاص تشدید رخ می دهد که این فرکانس خاص فرکانس تشدید نامیده می شود. فرکانس تشدید فرکانسی است که در آن رآکتنس خازنی (Xc) و رآکتنس القایی (XL) برابر هستند.
برای ترکیبی مثالی برای بار صنعتی که شامل اندوکتانس بار و یا رآکتنس ترانسفورماتور که بعنوان XL عمل می کند و رآکتنس خازن تصحیح ضریب توان که بصورت Xc خودنمایی می کند فرکانس تشدیدی برابر با LC خواهیم داشت . رآکتنس خازنی متناسب با فرکانس کاهش می یابد (توجه : Xc با فرکانس نسبت عکس دارد). در حای که رآکتنس القایی متناسب با آن افزایش می یابد (توجه
: XL با فرکانس نسبت مستقیم دارد).این فرکانس تشدید به سبب متغیر بودن الگوی بار متغیر خواهد بود. این مساله برای ظرفیت خازنی ثابت کل برای اصلاح ضریب توان پیچیده تر است. برای درک صحیح این پدیده لازم است دو نوع وضعیت تشدید شامل حالت تشدید سری و حالت تشدید موازی مورد توجه قرار گیرند. این دو امکان در زیر توضیح داده می شوند.
 
تشدید سری:

یک ترکیب سری رآکتنس سلفی – خازنی ، مدار تشدید سری شکل می دهد که در شکل زیر نشان داده شده است.
 
 
به خاطر ترکیب سری سلف و خازن ، در فرکانس تشدید امپدانس کل به پایین ترین سطح کاهش می یابد و این امپدانس در فرکانس تشدید طبیعتی مقاومتی دارد. بنا براین در فرکانس تشدید رآکتنس خازنی و رآکتنس سلفی (القایی) برابر هستند.این امپدانس پایین برای توان ورودی در فرکانس تشدید ، افزایش توانی جریان را نتیجه می دهد.شکل داده شده زیر رفتار امپدانس خالص در وضعیت تشدید سری را نشان می دهد.

 
 


در کاربری صنعتی رآکتنس ترانسفورماتور قدرت به علاوه خازنهای اصلاح ضریب توان در سمت ولتاژ پایین به عنوان یک مدار تشدید موازی برای سمت ولتاژ بالای ترانسفورماتور عمل می کند. اگر این فرکانس تشدید ترکیب سلف و خازن بر فرکانس هارمونیک شایع در صنعت منطبق شود ، بخاطر بستری با امپدانس پایین ارائه شده توسط خازن ها برای هارمونیک ها ، منجر به افزایش توانی جریان خازن ها خواهد شد. از این رو خازن های ولتاژ پایین در سطحی بسیار بالا اضافه بار پیدا خواهند کرد که همچنین این عمل موجب تحمیل بار اضافی بر ترانسفورماتور می شود. این پدیده منجر به تخریب ولتاژ در شبکه ولتاژ پایین می شود.
 

تشدید موازی:


یک تشدید موازی ترکیبی از رآکتنس خازنی و القایی است که در شکل زیر نمایش داده شده است.
 
 

در اینجا رفتار امپدانس برعکس حالت تشدید موازی خواهد بود که در شکل داده شده در زیر ، نشان داده شده است.در فرکانس تشدید امپدانس منتجه مدار به مقداری بالا افزایش می یابد. این ، منجر به بوجود آمدن مدار تشدید موازی میان خازن های اصلاح ضریب توان و اندوکتانس بار می شود که نتیجه آن عبور ولتاژ بسیار بالا هم اندازه  امپدانس ها و جریان های گردابی بسیار بالا درون حلقه خواهد بود.

 
 


در کاربری صنعتی خازن اصلاح ضریب توان مدار تشدید موازی با اندوکتانس بار تشکیل می دهد.هارمونیک های تولید شده از سمت بار رآکتنس شبکه را افزایش می دهند. که موجب بلوکه شدن هارمونیک های سمت تغذیه می شود.این منجر به تشدید موازی اندوکتانس بار و اندوکتانس خازنی می شود. مدار LC (سلفی – خازنی) مواز ی ، شروع به تشدید میان آنها می کند که منجر به ولتاژ بسیار بالا و جریان گردابی بسیار بالا در درون حلقه مدار سلف – خازن (LC) می شود. نتیجه این امر آسیب به تمام سمت ولتاژ پایین سامانه الکتریکی است.
ایزوله کردن تشدید موازی از ایزولاسیون تشدید سری نسبتا پیچیده تر است.اساسا این امر بخاطر تنوع بار صنعتی از زمانی به زمان دیگر است که موجب تغییر فرکانس تشدید می شود. شکل زیر تاثیر ظرفیت خازنی ثابت و اندوکتانس متغیر را نشان می دهد.
 


 
این تغییر مداوم فرکانس تشدید ممکن است موجب تطبیق فرکانس تشدید بر فرکانس هارمونیک شود که ممکن است منتج به ولتاژ بالا و جریان بالا که سبب نقص و خرابی تجهیزات الکتریکی می شوند ، گردد.بنا بر این در هر دو تشدید موازی و سری خازنهای قدرت متاثر هستند که بکار گیری دستگاه های حفاظتی و ایمنی را برای خازنها ایجاب می نماید. این امر درک صحیح بر خازنهای قدرت را قبل از از اعمال تصحیح بخاطر تاثیر هارمونیک ها و تشدید ایجاب می نماید.
 
خازنهای قدرت:

خازنهای اصلاح ضریب توان نسبت به هارمونیک ها حساس اند و بیشتر عیوب خازنهای قدرت ، عیوبی با طبیعت زیر را نشان می دهند :
هارمونیک ها – هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و ...
تشدید
اضافه ولتاژ
امواج کلید زنی
جریان هجومی
ولتاژ آنی بازگیری جرقه
تخلیه / بازبست ولتاژ
 
بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیکها برای دور کردن خازن از خرابی بسیار مهم است.
اساسا خازن ها امواج کلید زنی تولید می کنند که عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.
جریان هجومی پدیده ای است که هنگام به مدار وصل کردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار کم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود که از خازن عبور می کند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن کردن خازن ها فقط در مقابل شار جریان مقاومت می کند.
این امر هنگامی پیچیده تر می گردد که در ترکیب موازی بانک خازنی ممکن است جریان هجومی کلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شکل موج جریان سبب تخریب در شکل موج ولتاژ می شود.
 
 
در هنگام خاموش کردن (از مدار خارج کردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش کردن خازن ها بوجود خواهد آمد که ممکن است موجب پدید آمدن جرقه در پایه ها شود.
هنگامی که خازن خاموش می شود شار الکتریکی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی که تخلیه بشکل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه کامل دوباره موجب افزایش جریان هجومی می شود.
 
علاوه بر دستگاه های مسدود کننده هارمونیک ها که با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج کلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند که بطور دقیق تعریف و بررسی شوند.
 
دستگاه های مسدود کننده هارمونیک ها:
برای کاربری سالم خازن ها لازم است که فرکانس تشدید مدار LC (سلف – خازن) که شامل ادوکتانس بار و خازنهای اصلاح ضریب توان می شود ، به فرکانسی دور از کمترین فرکانس هارمونیک تغییر داده شود. برای مثال هارمونیک هایی که در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیکی که بر خازن ها تاثیر می گذارد هارمونیک پنجم است که در فرکانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوکتانس به شکل زیر است :
ترکیب سری LC (سلف – خازن) در فرکانسی زیر 250هرتز تشدید می کند . بنابراین در همه فرکانس های هارمونیک ها ترکیب سری سلف و خازن مانند یک ترکیب سلفی عمل خواهد کرد و امکان تشدید برای هارمونیک پنجم یا هر هارمونیک بالاتری از بین می رود. شکل زیر نامیزان سازی (De – Tuning) خازن ها را نشان می دهد.
 
 
این ترکیب سلف و خازن که در آن فرکانس تشدید در فرکانسی دور از فرکانس هارمونیک تنظیم شده است ، مدار LC (سلف – خازن) نامیزان شده
(De-Tuned) نام دارد. ضریب نا میزان سازی نسبت رآکتنس به طرفیت خازنی است. در مدار خازنی نامیزان شده ، اساسا سلف مانند دستگاه مسدود کننده هارمونیک ها عمل می کند. برای خازن ها ضریب مناسب نامیزان سازی حدود % 7 است که فرکانس تشدید را در 189 هرتز تنظیم می کند.
اما ، نامیزان سازی % 5.67 همچنین در جایی استفاده می شود که فرکانس تشدیدی معادل 210 هرتز دارد . هر دو درجه نامیزان سازی ، مسدود کردن (بلوکه کردن) هارمونیک ها از خازن ها را تضمین می کنند. شکل زیر درجه نامیزان سازی را نمایش می دهد.

 
 
 


بانک های نامیزان سازی خازن:


بانک های نامیزان سازی خازن نیازمند آن هستندکه با نکات اساسی زیر مشخص شوند :
انتخاب درجه نامیزان سازی
محاسبه خازن کل خروجی مورد نیاز
محاسبه افزایش ولتاژ بوسیله سلف های سری
درجه نامیزان سازی مطلوب بر پایه هارمونیک موجود است. لازم است که هارمونیک های سمت بار اندازه گیری شوند تا در درجه نامیزان تصمیم گیری شود.
*
خروجی خازن و سطح ولتاژ نیاز به انتخاب صحیح بر اساس درجه نامیزان سازی دارند. برای مثال برای %7 نامیزان سازی برای رسیدن به 200 کیلو ولت آمپر رآکتیو خروجی (KVAR) در 400 ولت ، نیاز به آن داریم که خازن 240 KVAR خروجی با ولتاژ 400 ولت انتخاب نماییم. این بدلیل افزایش ولتاژ بوسیله اندوکتانس سری است. مشابها برای رسیدن به 200 KVAR خروجی در ولتاژ 440 ولت به خازن های 240 KVAR خروجی 480 ولتی نیاز است.
محاسبه افزایش ولتاژ به سبب رآکتنس سری ، بر اساس نامیزان سازی است و به روش زیر انجام می گیرد :
( درجه نامیزان سازی – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن
 

سامانه خازنی ایده آل:

برای تصحیح ضریب توان در بار صنعتی کنونی که شامل هارمونیک ها و تشدید می شود ، یک سامانه اتصال خازنی اساسا باید خصوصیات زیر را دارا باشد :
ظرفیت خازنی متغیر بر اساس توان رآکتیو برای دوری از تغییر فرکانس تشدید. این امر انتخاب صحیح پنل های APFC را ممکن می سازد. پنل APFC باید خصوصیات زیر را داشته باشد.
حسگرها باید به طور مداوم سطح هارمونیک های ولتاژ را نمایش دهد و خازن ها را تحت زیر سطوح بالاتر هارمونیک ها محافظت نماید.
انتخاب محدوده هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین شناخت تخریب همه هارمونیک ها برای تنظیم حدود ایمن و همچنین پیش بینی تغییرات بعدی هارمونیک ها.
مونیتورینگ جریان RMS برای محافظت خازن ها تحت هر حالت تشدید.
کنترل مشخصات ، برای دوری از بکارگیری ظرفیت مازاد خازنی تحت حالت کم بار.
انتخاب خازن با عمر بالا و با تضمین مشخصات زیر :
ظرفیت اضافه بار : حداقل دو برابر جریان اسمی به طور مداوم و 350 برابر آن هنگام جریان هجومی.
قابلیت پایداری در مقابل اضافه ولتاژ :بیشتر از %10 و بالاتر از ولتاژ مجاز بصورت پیوسته.
قابلیت پایداری در مقابل هارمونیک ها : تضمین محدوده های هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین برای محدوده های THD.
مدار سلفی De – Tuned برای مسدود کردن هارمونیک ها (الگوی هارمونیک بار باید قبل از تعیین درجه نامیزان سازی (De – Tuning) اندازه گیری شود).
انتخاب سطح خازن و سطح ولتاژ براساس درجه نامیزان سازی.
دستگاه های کلیدزنی با تقلیل دهنده های داخلی برای تقلیل امواج کلید زنی برای خازن های قدرت.
اساسا این خصوصیات با مطالعه متناسب هارمونیک های ولتاژ بار همراه است که تضمین می کند که تاثیر مخرب هارمونیک ها و تشدید از خازن ها دور شود که بدین وسیله عمر خازن ها و کارایی کل سامانه الکتریکی را افزایش می دهد.
 

نتیجه گیری

علم به شرایط و خصوصیات خازن ها و عوامل موثر بر آنها از جمله هارمونیک ها نه تنها موجب افزایش امنیت و سلامتی و طول عمر آنها خواهد شد بلکه سبب کاهش هزینه های پیش بینی شده و نشده در بکار گیری انرژی الکتریکی می شود.

کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/25:: 8:13 عصر     |     () نظر

در یک تلاش دیگر از این دست لاری کاستیوک از دانشگاه آلبرتای کانادا در حال کار روی یک نوع باتری است که نیروی خود را از آب می گیرد، یعنی تولید الکتریسیته به طور مستقیم از آب ، اما در مقیاس بسیار کوچک.

در حال حاضر نیز واژه ای با نام هیدروالکتریسیته یا همان برق آبی وجود دارد و بیشتر افراد نیز با آن آشنا هستند.
در هیدروالکتریسیته ، آب از ارتفاعی به پایین می ریزد و توربین ها را چرخانده و به این ترتیب الکتریسیته تولید می کند؛ اما روشی این دانشمند باارزش که ذکر شد، کاملا فرق دارد.

وی آب را تحت فشار قرار می دهد و آنها را از کانال های میکروسکوپی و بسیار بسیار ریز که درون یک لوله شیشه ای قرار دارند، رد می کند و به این ترتیب مستقیما برق را از آب می گیرد.

با عبور آب از سطح کانال ها، یونهای آب به سطوح جامد مالیده می شوند و شارژ الکتریکی شده و به کمک الکترودهایی که در انتهای هر یک از کانال ها قرار می گیرند، انرژی الکتریکی استخراج می شود.
گرچه جریان تولید شده در این روش نیز بسیار کم و در حد 4 میکرووات است ؛ اما اگر میلیون ها کانال با خصوصیات ذکر شده به یکدیگر ملحق شوند، می توان خروجی را افزایش داد و به این ترتیب نیروی کافی خلق یک باتری آبی را به دست آورد.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/3/25:: 8:11 عصر     |     () نظر
<      1   2   3   4   5   >>   >