سفارش تبلیغ
صبا ویژن
محبّت انسان به برادرانش، برایش نزد خداوند، فضیلتی به شمار می رود. [امام صادق علیه السلام]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ
   در زمانه کاهش وزن و تناسب اندام، حتی خود وزن هم نگران وزن خود است. دانشمندان می گویند کیلوگرم استاندارد سبک تر می شود و این امر می تواند باعث ایجاد اشتباهات بالقوه ای در بسیاری از تحقیقات علمی شود. کیلوگرم به وسیله استوانه ای از جنس پلاتین ـ ایریدیم که در سال 1889 در انگلستان ساخته شده است، تعریف می شود. هیچ کس نمی داند دلیل این کاهش وزن چیست، یا حداقل چرا وزن این استوانه در مقایسه با سایر وزنه های مرجع کاهش می یابد، اما در هر صورت این تغییر وزن عاملی شد تا یک جست وجوی بین المللی برای یافتن تعریف دقیق تری از وزن صورت گیرد.

پیتر بیکر یکی از دانشمندان آزمایشگاه استانداردهای فدرال، که موسسه ای با 1500 محقق است و کارش اختصاصاً توسعه روش های جدید برای اندازه گیری هرچه دقیق تر کمیت هاست، در این مورد می گوید: «مطمئناً داشتن استانداردی که به طور مرتب در حال تغییر است، مفید نخواهد بود. » حتی تغییری به اندازه 50 میکروگرم ـ کمتر از وزن یک دانه نمک ـ در یک کیلوگرم برای ایجاد خطا در محاسبات دقیق علمی کافی است.

دکتر بیکر سرپرست یک گروه بین المللی از محققانی است که در جست وجوی راهی برای ارائه تعریف جدیدی از کیلوگرم برپایه تعداد اتم های یک عنصر خاص هستند. سایر دانشمندان از جمله محققان انستیتو ملی و فناوری در واشنگتن، در حال توسعه فناوری دیگری هستند که کیلوگرم را با استفاده از مکانیسم پیچیده دیگری که با عنوان ترازوی وات شناخته می شود تعریف کنند. تصمیم نهایی نیز برعهده کمیته بین المللی اوزان و مقادیر، سازمانی که طی یک معاهده بین المللی در سال 1865 به وجود آمده است، قرار دارد. این سازمان حفاظت از کیلوگرم مرجع بین المللی را برعهده دارد و آنرا تحت تدابیر شدید امنیتی در شاتو واقع در حومه پاریس نگهداری می کند. این استاندارد سالی یک بار تحت تدابیر شدید امنیتی توسط تنها سه نفری که کلید آن را در اختیار دارند، مورد بازبینی قرار می گیرد. اما تغییر وزن ایجاد شده خاطرنشان کرده است که زمان کنار گذاشتن این استاندارد برای انجام اندازه گیری ها فرا رسیده است. دکتر ریچارد دیویس رئیس قسمت جرم در بخش تحقیقات کمیته بین المللی می گوید: «این کار قسمتی از وظایف ماست. اگر نتوان به مفاد پیمان نامه پایبند بود، لازم است که تغییراتی در آن صورت گیرد. »

کیلوگرم تنها مورد از هفت واحد اصلی اندازه گیری است که از زمان تعریف آن در قرن نوزدهم تاکنون بدون تغییر مانده است. طی سالیان گذشته، دانشمندان در تعریف واحدهایی نظیر متر (که در اصل بر مبنای محیط زمین تعریف شده بود) و ثانیه (که بر اساس کسری از یک روز تعریف شده بود) تجدیدنظر کرده اند. هم اکنون متر بر اساس فاصله ای که نور طی یک ـ 458/692/299ام ثانیه طی می کند، و ثانیه بر اساس مدت زمانی که طول می کشد، اتم سزیم 660/631/192/9 مرتبه ارتعاش کند، تعریف می شود.

هرکدام از این کمیت ها را می توان با دقت بسیار اندازه گرفت و نکته دیگری که از اهمیت مشابهی برخوردار است آنکه در هر کجای جهان می توان آنها را دوباره ایجاد کرد. در ابتدا کیلوگرم بر اساس جرم یک لیتر آب تعریف شده بود، اما بعدها مشخص شد، که اندازه گیری دقیق جرم یک لیتر آب بسیار مشکل است. در عوض قرار شد یک طلاساز انگلیسی استخدام شود تا یک استوانه از جنس پلاتین ایریدیم بسازد که برای تعریف کیلوگرم استاندارد به کار رود. یکی از عواملی که باعث شد تا کیلوگرم از این لحاظ از سایر واحدها عقب بماند، این بود که، سود عملی فوری برای افزایش دقت آن متصور نبود. با این همه انحراف در وزن کیلوگرم استاندارد باعث ایجاد خطا در سایر اندازه گیری ها می شد. برای مثال ولت بر اساس کیلوگرم تعریف می شود، بنابراین تعریفی بر مبنای کیلوگرم پایدار منجر به آن می شود که تعریف ولت بر مبنای واحدهای اصلی اندازه گیری با دقت هرچه بیشتر صورت گیرد.

حدود هشتاد نسخه از روی کیلوگرم مرجع ،تولید و بین کشورهای امضاکننده معاهده سیستم متریک توزیع شد. تاریخ پرشور این استوانه کوچک فلزی بیانگر آن است که کل جهان طی مدت های مدیدی از تعریف واحدی برای کیلوگرم استفاده کرده است. بعضی از این نمونه های فلزی که به کشورهای امضاکننده اختصاص یافته بود بعدها ناپدید شد، از جمله نمونه ای که در اختیار صربستان بود. ژاپن نیز پس از جنگ جهانی دوم مجبور شد نمونه خود را تسلیم کند. آلمان نیز چند نمونه از آن را تحویل گرفت، از جمله یکی که در سال 1889 به ایالت باواریا اختصاص یافت و نمونه دیگری که به آلمان شرقی تعلق گرفت.

آلمان ضمن همکاری با دانشمندان سایر کشورها از جمله استرالیا، ایتالیا و ژاپن سرگرم ساخت یک کریستال دقیقاً کروی یک کیلوگرمی از جنس سیلیکون برای روزآمد کردن کیلوگرم است. ایده ساخت این نمونه بر این مبنا قرار دارد که با دانستن تعداد دقیق اتم های موجود در کریستال، فاصله آنها از یکدیگر و اندازه کره، تعداد دقیق اتم های موجود در آن را می توان حساب کرد. دکتر بیکر و همکارانش برای جداسازی سه ایزوتوپ سیلیکون به کارخانه های قدیمی ساخت سلاح های هسته ای شوروی روی آورده اند. سانتریفوژهای موجود در این کارخانه زمانی برای تولید اورانیم غنی شده به کار می رفت و امروزه نیز می تواند سیلیکون با خلوص مورد نظر را تولید کند. دکتر بیکر می گوید: «ما به حدود نه تا از این دستگاه ها نیاز داریم. » تجهیزات غنی سازی اورانیم یکی از مکان هایی است که می توان از این گونه دستگاه ها استفاده کرد. دکتر بیکر در ادامه می گوید: «قرار است از چهار تا از این دستگاه ها استفاده کنیم. » و بدین ترتیب می توان سیلیکون 28 را با خلوص 99/99 درصد تولید کرد. پیش از این یک بلور آزمایشی ساخته شده بود. دکتر آرنولد نیکلاس یکی دیگر از دانشمندان آزمایشگاه استانداردهای آلمان مسئولیت تحقیق در مورد اینکه آیا این کره واقعاً گرد است یا خیر را برعهده داشت. وی حدود نیم میلیون مکان مختلف از این کریستال را اندازه گرفت تا شکل آن را مشخص کند. این کره شاید گردترین چیزی باشد که بشر تاکنون ساخته است. دکتر نیکلاس می گوید: «اگر کره زمین هم همین قدر گرد بود، آن وقت کوه اورست فقط چهار متر ارتفاع داشت. » یکی از مشخصات جالب این کره واقعاً صاف این است که راهی برای تشخیص چرخش یا سکون آن وجود ندارد. مگر آنکه لکه کوچکی را روی سطح آن ایجاد کنیم تا چشم بتواند مسیر حرکت آن را ردیابی کند. دانشمندان ایالات متحده، انگلستان، فرانسه و سوئیس مدعی هستند که محاسبه تعداد دقیق اتم های سیلیکون موجود در کریستال با استفاده از فناوری امروز از دقت کافی برخوردار نیست و به همین دلیل آنها سرگرم ابداع روشی برای محاسبه کیلوگرم با استفاده از ولتاژ هستند.

دکتر ریچارد اشتاینر، یکی از دانشمندان، انستیتو استانداردها و فناوری واشنگتن، که سرپرست یک طرح بین المللی برای ساخت ترازوی وات است، در این زمینه می گوید: «اندازه گیری انرژی آسان تر از شمارش اتم هاست. »

وی طی هفته گذشته گزارشاتی ارائه داد مبنی بر اینکه داده هایی که به دست آورده اند دقیقاً همان چیزی است که به آن نیاز دارند. وی می گوید: «خطایی که در محاسبات ما وجود دارد بسیار ناچیز است. » چرا که خطای آنان حدود 10 قسمت در ده میلیون است. ایده ترازوی وات بر مبنای اندازه گیری نیروی الکترومغناطیسی مورد نیاز برای برقراری تعادل با یک کیلوگرم استاندارد است. از آنجایی که میدان گرانشی مکانی که آزمایش در آن انجام می گیرد با دقت زیاد مشخص شده است، جرم مورد نظر را می توان به قدرت الکترومغناطیسی مربوط ساخت.

(اندازه گیری میدان مغناطیسی بسیار پیچیده است و به اطلاعات زیادی از جمله تغییرات هر روزه نیروی جاذبه نیاز دارد. ) بنابراین تعریف کیلوگرم باید براساس اندازه گیری آن نیرو یا برحسب چیز دیگری که از آن کمیت اخذ شده است، مثلاً جرم یک الکترون تعریف شود. این آزمایش ها در واشنگتن در حال پیگیری است، اما علی رغم پیچیدگی آنها و مسیر پرپیچ وخم محاسبات جرم، دکتر اشتاینر می گوید وی مطمئن است که گروه وی به زودی خواهد توانست اطلاعات مجاب کننده را ارائه دهد. وی می گوید: «خلاصه بگویم، فکر می کنم ما برنده ایم. »

دکتر دیویس که عضو گروهی است که تصمیم گیری نهایی سرنوشت کیلوگرم را بر عهده دارند می گوید، وی هنوز هم از سرنوشت این طرح مطمئن نیست.

بسیاری از دانشمندان بر این عقیده اند که بهترین روش برای تعریف کیلوگرم شمارش تعداد کلی اتم های یک عنصر خاص است. طرحی نیز در دست اجراست که در آن تعداد اتم های طلا شمارش می شود. اما تعداد بسیار زیاد اتم های موجود در یک کیلوگرم، عددی تقریباً 25 رقمی، باعث می شود انجام این کار را در آینده نزدیک غیرممکن جلوه دهد. وی مایل است دیدگاه خود را وارد دنیای اندازه گیری های بسیار دقیق کند. او می گوید: «بسیار عالی خواهد بود اگر دو روش آزمایش متفاوت داشته باشیم که یکدیگر را تایید کنند. »

کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 86/3/5:: 9:36 عصر     |     () نظر
اثر فتوالکتریک که برای اولین بار توسط آلبرت انیشتین شرح داده شد. بر اساس این پدیده وقتی که یک کوانتوم انرژی نوری یعنی یک فوتون در یک ماده نفوذ می کند، این احتمال وجود دارد که بوسیله الکترون جذب شود. و الکترون انتقال پیدامی کند.

اخیراً دانشمندان آمده اند سلولهای خورشیدی ساخته اند. وقتی که امواج الکترو مغناطیسی خورشید برروی آن می تابد، جفت ماده ها ( الکترون و پوزیترون ) یعنی در نوار گاف نیم رسانا به تعداد زیاد تولید می شود «تولید زوج). در نتیجه برهم کنشهای فیزیکی بین ذرات صورت می گیرد که نهایتاً منجر به یک پیل خورشیدی می شود.

مواد سازنده سلول های خورشیدی

ماده ای که سلولهای خورشیدی از آنها ساخته می شود سیلیکون و آرسینورگالیم هستند. سلولهایی که از سیلیکون ساخته می شوند از لحاظ تئوری بازده ماکزیمم حدود 22 درصد دارند. ولی بازده عملی آن حدود 15 تا 18 درصد است. در صورتی که بازده سلولها یی که از آرسینورگالیم ساخته می شود بازده عملی آنها بیشتر از 20 درصد است.

ماهواره های دریافت کننده انرژی خورشیدی

یک ایستگاه فضایی در مداری که هم زمان با زمین در حرکت باشد دایماً با تابش خورشید روشن می شود. برقراری ماهواره های خورشیدی در مدار زمین بطور جدی در سال 1968 پیشنهاد شد. در این ماهواره ها پانل هایی ساخته اند از جنس آرسینوگالیم که انرژی خورشید را دریافت و تبدیل به جفت الکترون می کند، در داخل ماده الکترون ها شروع به حرکت می کنند که نهایتاً منجر به تولید الکتریسته می شود. ضریب توان سلولها 18% ولتاژ بالای آن 40 کیلو وات با 5% اتلاف توان محاسبه شده است.

کلمات کلیدی: اپتیک


نوشته شده توسط مهدی 86/2/26:: 9:25 عصر     |     () نظر
 مادون در لغت به معنای زیر دست و قرمز به معنای هر چه به رنگ خون باشد، است. پس میتوان گفت که مادون قرمز اشعه بسیار ریز و قرمز رنگ است.

اطلاعات اولیه

کشف هرسل اولن گام در ایجاد پدیده‌ای که ما آن را طیف الکترومغناطیسی مینامیم. نور مرئی و پرتوهای مادون قرمز دو نمونه اشکال فراوانی از انرژی هستند که توسط تمام اجسام موجود در زمین و اجرام آسمانی تابانده میشوند. مادون قرمز در طیف الکترومغناطیسی دارای محدوده طول موجی بین 0.78 تا 1000 میکرو متر است. تنها با مطالعه این تشعشعات است که میتوانیم اجرام آسمانی را تشخیص و تمیز دهیم و تصویری کامل از چگونگی ایجاد جهان و تغییرات آن بدست آوریم. در سال 1800 سر ویلیام هرشل یک نمونه نامرئی از تشعشعات را کشف کرد که این نمونه دقیقا زیر بخش قرمز طیف مرئی قرار داشت. او این شکل از تشعشعات را مادون قرمز نامید.

سیر تحولی و رشد

Greathouse و همکارانش طی مطالعه‌ای تاثیر لیزر مادون قرمز را به انتقال عصبی ، عصب رادیال بررسی کردند. زمان تاخیر ، دامنه پتانسیل عمل و دما ، متغیرهای مورد آزمایش مشاهده نشد.Lynn Snyder و همکارانش اثر لیزر کم توان هلیوم - نئون را بر زمان تاخیر شاخه حسی عصب رادیال در دو گروه لیزر و پلاسبو بررسی نمودند و مشاهده کردند که در گروه لیزر ، افزایش معنی دارا در زمان تاخیر حسی پس از بکارگیری لیزر ایجاد گردیده است.

Bas Ford و همکارانش طی مطالعه‌ای اثر لیزر کم توان هلیوم - نئون را بر شاخه حسی اعصاب رادیال و مدین بررسی کردند. هیچ اختلاف معنی داری در دامنه پتانسیل عمل ، زمان تاخیر و دما ساعد بعد از بکارگیری لیزر مشاهده نشد.Baxter و همکارانش افزایش معنی دار در زمان تاخیر عصب مدین بعد از بکارگیری لیزر گرارش کردند. Low و همکارانش کاهش دما را به دنبال تابش لیزر کم توان مادون قرمز دیدند.

نتایج اشعه مادون قرمز

گرمایی که ما از خورشید یا از یک محیط گرم احساس میکنیم، همان تشعشعات مادون قرمز یا به عبارتی انرژی گرمایی است. حتی اجسامی ‌که فکر میکنیم خیلی سرد هستند، نیز از خود انرژی گرمایی منتشر میسازند (یخ و بدن انسان). سنجش و ارزیابی انرژی مادون قرمز ساطع شده از اجرام نجومی ‌به علت اینکه بیشترین جذب را در اتمسفر زمین دارند مشکل است. بنابراین بیشتر ستاره شناسان برای مطالعه انتشار گرما از این اجرام از تلسکوپهای فضایی استفاده میکنند.

مادون قرمز در نجوم

تلسکوپها و آشکارسازهایی که توسط ستاره شناسان مورد استفاده قرار میگیرند نیز از خودشان انرژی گرمایی منتشر میسازند. بنابراین برای به حداقل رساندن این تاثیرات نامطلوب و برای اینکه بتوان حتی تشعشعات ضعیف آسمانی را هم آشکار ساخت، اخترشناسان معمولا تلسکوپها و تجهیزات خود را به درجه حرارتی نزدیک به 450?F ، یعنی درجه حرارتی حدود صفر مطلق ، میرسانند. مثلا در یک ناحیه پرستاره ، نقاطی که توسط نور مرئی قابل رویت نیستند، با استفاده از تشعشعات مادون قرمز بخوبی نشان داده میشود. همچنین مادون قرمز میتواند چند کانون داغ و متراکم را همره با ابرهایی از گاز و غبار نشان دهد. این کانونها شامل مناطق پرستاره‌ای هستند که در واقع میتوان آنها را محل تولد ستاره‌ای جدید دانست. با وجود این ابرها ، رویت ستاره‌های جدید با استفاده از نور مرئی به سختی امکانپذیر است.

اما انتشار گرما باعث آشکار شدن آنها در تصاویر مادون قرمز میشود. اختر شناسان با استفاده از طول موجهای بلند مادون قرمز میتوانند به مطالعه توزیع غبار در مراکزی که محل شکل گیری ستاره‌ها هستند، بپردازند. با استفاده از طول موجهای کوتاه میتوان شکافی در میان گازها و غبارهای تیره و تاریک ایجاد کرد تا بتوان نحوه شکل گیری ستاره‌های جدید را مورد مطالعه قرار داد. فضای بین ستاره‌ای در کهکشان راه شیری ما نیز از توده‌های عظیم گاز و غبار تشکیل شده است. این فضاهای بین ستاره‌ای یا از انفجارهای شدید نواخترها ناشی شده‌اند و یا از متلاشی شدن تدریجی لایه‌های خارجی ستاره‌هایی جدید از آن شکل میگیرند. ابرهای بین ستاره‌ای که حاوی گاز و غبار هستند، در طول موجهای بلند مادون قرمز خیلی بهتر آشکار میشوند (100 برابر بیشتر از نور مرئی).

اخترشناسان برای دیدن ستاره‌های جدید که توسط این ابرها احاطه شده‌اند، معمولا از طول موجهای کوتاه مادون قرمز برای نفوذ در ابرهای تاریک استفاده میکنند. اخترشناسان با استفاده از اطلاعات بدست آمده از ماهوارهای نجومی ‌مجهز به مادون قرمز صفحات دیسک مانندی از غبار را کشف کردند که اطراف ستاره‌ها را احاطه کرده‌اند. این صفحات احتمالا حاوی مواد خامی ‌هستند که تشکیل دهنده منظومه‌های شمسی هستند. وجود آنها خود گویای این است که سیاره‌ها در حال گردش حول ستاره‌ها هستند.

مادون قرمز در پزشکی

اگر نگاه دقیق و علمی ‌به یک طیف الکترومغناطیسی بیندازیم، میبینیم که از یک طرف طیف تا سوی دیگر آن ، انواع تشعشعات و پرتوها بر اساس طول موج و فرکانس‌های مختلف قرار دارند، از آن جمله میتوان به تشعشعات گاما ، اشعه ایکس ، ماورای بنفش ، نور مرئی ، مادون قرمز و امواج رادیویی اشاره کرد. هر کدام از این پرتوها و تشعشعات همگام با پیشرفت بشر ، به نوبه خود چالش‌هایی را در زمینه‌های علمی ‌پدید آورده‌اند که در اینجا علاوه بر کاربرد مادون قرمز در شاخه ستاره شناسی ، اشاره‌ای به کارآیی چشمگیری این پرتو در رشته پزشکی خواهیم داشت.

کاربرد درمانی مادون قرمز

بکار بردن گرما یکی از متداولترین روشهای درمان فیزیکی است. از موارد استعمال درمانی مادون قرمز موارد زیر را میتوان ذکر کرد.

تسکین درد

با وجود حرارت ملایم ، کاهش درد به احتمال زیاد بواسطه اثر تسکینی بر روی پایانه‌های عصبی ، حسی ، سطحی است. همچنین به علت بالا رفتن جریان خون و متعاقب آن متفرق ساختن متابولیتها و مواد دردزای تجمع در بافتها ، درد کاهش مییابد.

استراحت ماهیچه

تابش این اشعه راه مناسبی برای درمان اسپاسم و دستیابی به استراحت عضلانی میباشد.

افزایش خون رسانی

در درمان زخمهای سطحی و عفونتهای پوستی ، برای اینکه فرآیند ترمیم به خوبی انجام گیرد، باید به مقدار کافی خون به ناحیه مورد نظر برسد و در صورت وجود عفونت نیز افزایش گردش خون سبب افزایش تعداد گلبولهای سفید و کمک به نابودی باکتریها میکند. از این پرتو میتوان برای درمان مفصل آرتوریتی و ضایعات التهابی نیز استفاده کرد.

کاربرد تشخیصی مادون قرمز

از مهمترین کابردهای تشخیصی آن میتوان توموگرافی را نام برد. اصطلاح ترموگرافی به عمل ثبت و تفسیر تغییراتی که در درجه حرارت سطح پوست بدن رخ میدهد، اطلاق میشود. تصویر حاصل از این روش که توموگرام نامیده میشود، بخش الگوی حرارتی سطح بدن را نشان میدهد. در توموگرافی ، آشکار ساز ، تشعشع حرارتی دریافت شده توسط دوربین را به یک سیگنال الکترونیکی تبدیل میکند و سپس آن را علاوه بر تقویت بیشتر ، پردازش میکند تا اینکه یک صفحه کاتودیک مثل مونیتور تلویزیون آشکار شود.

تصاویر بدست آمده به صورت سایه‌های خاکستری رنگ میباشند، بدین معنی که سطوح سردتر به صورت سایه‌های خاکستری روشن دیده میشوند و در نوع رنگی آن نیز نواحی گرم ، رنگ قرمز و نواحی سرد ، رنگ روشن خواهند داشت. درجه حرارت پوست بدن در نتیجه فرآیندهای فیزیکی ، فیزیولوژیک طبیعی یا بیماری تغییر میکند. از این خاصیت تغییر گرمایی در عضوی خاص یا در سطح بدن برای آشکارسازی یک بیماری استفاده میشود که مهمترین آنها به قرار زیر است.

- بیماری پستان : وسیع ترین جنبه کاربردی توموگرافی در آشکار سازی سرطانهای پستانی است.

زیرا روشی کاملا مطمئن و بدون آزار است.

از پرتوهای یونیزان استفاده نمیشود.

روشی کاملا سریع ، راحت و ارزان است.

به دلیل بی ضرر بودن از قابلیت تکراری بسیار زیادی برخوردار است.

کاربرد ترموگرافی در مامائی

چون جفت از فعالیت بیولوژیکی زیادی برخوردار است. درجه حرارت حاصله در این محل بطور قابل ملاحظه‌ای از بافتهای اطراف بیشتر است. پس میتوان از توموگرافی برای تعیین محل جفت استفاده کرد.

ضررهای مادون قرمز

از طرف دیگر خطرهایی نیز در استفاده از مادون قرمز وجود دارد که میتوان به سوختگی الکتریکی (در اثر اتصال بدن به مدارات الکتریکی دستگاه) سر درد ، تولید ضعیف در بیمار و آسیب به چشمها در اثر تابش مستقیم پرتو اشاره کرد.

کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/2/26:: 9:24 عصر     |     () نظر
 
یک توپ را با میله پلاستیکی و دیگر را میله شیشه‌ای باردار کنید سپس آنها را به هم بچسبانید. گاهی دوبار ناپدید می‌شوند و همدیگر را از بین می‌برند. برای بیان این مساله می‌توان از یک قانون ریاضی مبنی بر اینکه اگر حاصل جمع دو کمیت صفر شود، یکی از آن دو مثبت و دیگری منفی است، استفاده نمود. طبق قرارداد به میله پلاستیکی را بار منفی و میله شیشه‌ای را بار مثبت نسبت داده‌اند.

بیان ساده ای از قانون بقای بار

وقتی که یک میله پلاستیکی را با خز مالش می‌دهیم، میله بار منفی و خز بار مثبت پیدا می‌کند. آزمایش را با دو جسم خنثی شروع می‌کنیم، یعنی مجموع بار آن دو برابر صفر است. بعد از مالش دادن ، یکی بار مثبت و دیگری بار منفی می‌یابد که باز هم بار کل برابر صفر می‌شود. همچنین وقتی میله‌ای بار مثبت بیابد، بار جسم پلاستیکی که میله شیشه‌ای را با آن مالش می‌دهیم منفی می‌شود.

هیچ کس نمی تواند یکی از این دو بار را خلق کند، بدون آنکه همزمان دیگری را نیز تولید کرده باشد در یک چنین فرایندی مقدار کل بار تغییر نمی‌کند. این مطلب بیانگر قانون بقای بار الکتریکی است. این قانون همانند قوانین پایستگی جرم و انرژی ، اندازه حرکت خطی ، اندازه حرکت زاویه ای و ... در فیزیک یک قانون بنیادی است.

قانون بقای بار الکتریکی در اتم

همه اجسام دارای ذراتی با بار الکتریکی مثبت و منفی هستند. این ذرات هماناتمهایی هستند که جهان مادی را می‌سازند. ابعاد این اتمها از مرتبه آنگستروم است. چندین میلیون از این اتمها ، در کنار هم ، چیزی در حدود یک نقطه نمایان می‌شوند. هر اتم از لحاظ بار الکتریکی خنثی است، زیرا به تعداد مساوی بار مثبت و منفی دارد. بار مثبت اتم و تقریبا تمامی جرم آن ، در مرکز آن ، یعنی در هسته متمرکز شده است. ابعاد هسته ده هزار برابر کوچکتر از ابعاد کل اتم است. هسته یک خوشه محکم به هم چسبیده متشکل از دو نوع ذره پروتونها و نوترونهاست.

تراکم جرم در این ذرات غیر قابل تصور است. یک تفاوت مهم بین پروتونها و نوترونها این است که پروتونها دارای بار الکتریکی مثبت بوده ولی نوترونها از نظر بار الکتریکی خنثی هستند. تعداد پروتونها هسته ، عنصر شیمیایی را که هسته به آن تعلق دارد، مشخص می‌کند، با این حال قسمت اعظم فضای اتم خالی است، در ناحیه اطراف هسته تعدادی ذره با بار الکتریکی منفی به نام الکترون وجود دارد. جرم الکترون کم است، اما بار آن منفی و مقدارش برابر مقدار بار روی پروتون است. از اینرو در یک اتم خنثی تعداد الکترونها در فضای اطراف هسته درست برابر تعداد پروتونها در داخل هسته است. الکترونها توسط نیروی جاذبه الکتریکی در نزدیکی هسته به آن مقید می‌شوند.

مبادله بار و قانون بقای بار الکتریکی

گاهی یک تماس ساده میان اجسام ممکن است باعث شود که تعدادی الکترون از یک جسم به جسم دیگر منتقل شود. وقتی میله پلاستیکی با خز مالش داده می‌شود، برخی الکترونها از خز به میله پلاستیکی منتقل می‌شوند. ممکن است تعداد الکترونهایی که به میله پلاستیکی منتقل می‌شوند، در حدود
( 9 ^ 10 ) باشد که ظاهرا زیاد است. تعداد کل الکترونهای موجود در میله پلاستیکی در حدود 24 ^ 10 است.

در فلزات بستگی الکترونها به هسته ضعیف است و الکترونها می‌توانند آزادانه در داخل ماده حرکت کنند. چون بار به راحتی در داخل میله فلزی به هم وصل نماییم، هر دو کره خنثی می‌شوند. ماده ای که بار الکتریکی را از خود عبور می‌دهد رسانا نامیده می‌شود. در جامدات ، فقط الکترونها می‌توانند حرکت کنند. اما محلول الکترولیت ، آب شور یا گاز داخل لامپ فلوئورسانس رساناهای بسیار خوبی هستند. زیرا حاملین بار مثبت و منفی هردو تحت تاثیر نیروی الکتریکی می‌توانند آزادانه حرکت کنند. در تمام فرایندهای مبادله بار و انتقالات اخیر قانون بقای بار الکترکی به دقت ملاحظه می‌شود. به عبارتی نحوه مبادله بار به توسط قانون بقای بار صورت می‌گیرد. در واکنشهای شیمیایی این قانون همانند قانون بقای جرم ظاهر می شود و واکنش را از نظر الکتریکی مجاز می داند که در طرفین واکنش مجموع بارهای الکتریکی برابر باشند.


کلمات کلیدی: مغناطیس


نوشته شده توسط مهدی 86/2/26:: 9:23 عصر     |     () نظر

  
انرژى هسته اى با توجه به ویژگى هاى حیرت انگیزش در آزادسازى حجم بالایى از انرژى در قبال از میان رفتن مقادیر ناچیزى از جرم، به عنوان جایگزین سوخت هاى پیرفسیلى که ناجوانمردانه در حال بلعیده شدن هستند، مطرح شده است. ایران نیز با وجود منابع گسترده نفت و گاز به دلیل کاربردهاى بهترى که سوخت هاى فسیلى نسبت به سوزانده شدن در کوره ها و براى تولید حرارت دارند، براى دستیابى به این نوع از انرژى تلاش هایى را از سال هاى دور داشته است و در سال هاى پس از انقلاب همواره مورد اتهام واقع شده که هدف اصلى اش نه فناورى صلح آمیز که رسیدن به فناورى تسلیحات هسته اى است.

در این گفتار پیش از آن که وارد مباحث متداول دیپلماتیک شویم نگاهى خواهیم انداخت به چرخه سوخت هسته اى و اجزاى تشکیل دهنده آن، همچنین مرز میان کاربرد صلح آمیز و تسلیحاتى را نشان خواهیم داد.چرخه سوخت هسته اى شامل مراحل استخراج، آسیاب، تبدیل، غنى سازى، ساخت سوخت باز تولید و راکتور هسته اى است و به یک معنا کشورى که در چرخه بالا به حد کاملى از خودکفایى و توسعه رسیده باشد با فناورى تولید سلاح هاى هسته اى فاصله چندانى ندارد.

استخراج

در فناورى هسته اى، خواه صلح آمیز باشد یا نظامى، ماده بنیادى موردنیاز، اورانیوم است. اورانیوم از معادن زیرزمینى و همچنین حفارى هاى روباز قابل استحصال است. این ماده به رغم آن که در تمام جهان قابل دستیابى است اما سنگ معدن تغلیظ شده آن به مقدار بسیار کمى قابل دستیابى است.

زمانى که اتم هاى مشخصى از اورانیوم در یک واکنش زنجیره اى دنباله دار که به دفعات متعدد تکرار شده، شکافته مى شود، مقادیر متنابهى انرژى آزاد مى شود، به این فرآیند شکافت هسته اى مى گویند. فرآیند شکاف در یک نیروگاه هسته اى به آهستگى و در یک سلاح هسته اى با سرعت بسیار روى مى دهد اما در هر دو حالت باید به دقت کنترل شوند. مناسب ترین حالت اورانیوم براى شکافت هسته اى ایزوتوپ هاى خاصى از اورانیوم 235 (یا پلوتونیوم 239) است. ایزوتوپ ها، اتم هاى یکسان با تعداد نوترون هاى متفاوت هستند. به هرحال اورانیوم 235 به دلیل تمایل باطنى به شکافت در واکنش هاى زنجیرى و تولید انرژى حرارتى به عنوان «ایزوتوپ شکافت» شناخته شده است. هنگامى که اتم اورانیوم 235 شکافته مى شود دو یا سه نوترون آزاد مى کند این نوترون ها با سایر اتم هاى اورانیوم 235 برخورد کرده و باعث شکاف آنها و تولید نوترون هاى جدید مى شود.براى روى دادن یک واکنش هسته اى به تعداد کافى از اتم هاى اورانیوم 235 براى امکان ادامه یافتن این واکنش ها به صورت زنجیرى و البته خودکار نیازمندیم. این جرم مورد نیاز به عنوان «جرم بحرانى» شناخته مى شود.باید توجه داشت که هر 1000 اتم طبیعى اورانیوم شامل تنها حدود هفت اتم اورانیوم 235 بوده و 993 اتم دیگر از نوع اورانیوم 238 هستند که اصولاً کاربردى در فرآیندهاى هسته اى ندارند.

تبدیل اورانیوم

سنگ معدن اورانیوم استخراج شده در آسیاب خرد و ریز شده و به پودر بسیار ریزى تبدیل مى شود. پس از آن طى فرآیند شیمیایى خاصى خالص سازى شده و به صورت یک حالت جامد به هم پیوسته که از آن به عنوان «کیک زرد» (yellow cake) یاد مى شود، درمى آید. کیک زرد شامل 70 درصد اورانیوم بوده و داراى خواص پرتوزایى (radioactive) است.

هدف پایه اى دانشمندان هسته اى از فرآیند غنى سازى افزایش میزان اتم هاى اورانیوم 235 است که براى این هدف اورانیوم باید اول به گاز تبدیل شود. با گرم کردن اورانیوم تا دماى 64 درجه سانتیگرادى حالت جامد به گاز هگزا فلوئورید اورانیوم (UFG) تبدیل مى شود. هگزافلوئورید اورانیوم خورنده و پرتوزا است و باید با دقت جابه جا شود، لوله ها و پمپ ها در کارخانه هاى تبدیل کننده به صورت ویژه اى از آلیاژ آلومینیوم و نیکل ساخته مى شوند. گاز تولیدى همچنین باید از نفت و روغن هاى گریس به جهت جلوگیرى از واکنش هاى ناخواسته شیمیایى دور نگه داشته شود.

غنى سازى

هدف غنى سازى مشخصاً افزایش میزان اورانیوم 235 _ ایزوتوپ شکافت _ است. اورانیوم مورد نیاز در مصارف صلح آمیز نظیر راکتورهاى هسته اى نیروگاه ها باید شامل دو تا سه درصد اورانیوم 235 باشد اما اورانیوم مورد نیاز در تسلیحات اتمى باید شامل بیش از نود درصد اورانیوم 235 باشد.شیوه متداول غنى سازى اورانیوم سانتریفوژ کردن گاز است. در این روش هگزافلوئورید اورانیوم در یک محفظه استوانه اى با سرعت بالا در شرایط گریز از مرکز قرار مى گیرد. این کار باعث جدا شدن ایزوتوپ هاى با جرم حجمى بالاتر از اورانیوم 235 مى شود (اورانیوم 238). اورانیوم 238 در طى فرآیند گریز از مرکز به سمت پائین محفظه کشیده شده و خارج مى شود، اتم هاى سبک تر اورانیوم 235 از بخش میانى محفظه جمع آورى و جدا مى شود. اورانیوم 235 تجمیع شده پس از آن به محفظه هاى گریز از مرکز بعدى هدایت مى شود. این فرآیند بارها در میان زنجیرى از دستگاه هاى گریز از مرکز در کنار هم چیده شده تکرار مى شود تا خالص ترین میزان اورانیوم بسته به کاربرد آن به دست آید.از اورانیوم غنى شده در دو نوع سلاح هسته اى استفاده مى شود یا به صورت مستقیم در بمب هاى اورانیومى و یا طى چند مرحله در بمب هاى پلوتونیومى مورد استفاده قرار مى گیرد.

بمب اورانیومى


هدف نهایى طراحان بمب هاى هسته اى رسیدن به یک جرم «فوق بحرانى» است که باعث ایجاد یک سرى واکنش هاى زنجیره اى به همراه تولید حجم بالایى از حرارت مى شود. در یکى از ساده ترین نوع طراحى این بمب ها یک جرم زیر بحرانى کوچک تر به جرم بزرگ ترى شلیک مى شود و جرم ایجاد شده باعث ایجاد یک جرم فوق بحرانى و به تبع آن یک سرى واکنش هاى زنجیره اى و یک انفجار هسته اى مى شود.کل این فرآیند در کمتر از یک دقیقه رخ مى دهد. براى ساخت سوخت براى یک بمب اورانیومى هگزافلوئورید اورانیوم فوق غنى شده در ابتدا به اکسید اورانیوم و سپس به شمش فلزى اورانیوم تبدیل مى شود. میزان انرژى آزاد شده ناشى از شکافت هسته اى را به کمک یک فناورى تقویتى افزایش مى دهند. این فناورى شامل کنترل و به کارگیرى خواص همجوشى یا گداخت هسته اى است.در همجوشى هسته اى ما شاهد به هم پیوستن ایزوتوپ هایى از هیدروژن و پس از آن تشکیل یک اتم هلیوم هستیم. به دنبال این واکنش مقادیر قابل توجهى گرما و فشار آزاد مى شود. از سوى دیگر همجوشى هسته اى سبب تولید نوترون هاى بیشتر و تغذیه واکنش شکافت شده و انفجار بزرگ ترى را ترتیب مى دهد.

برخى تجهیزات این فناورى تقویتى به عنوان بمب هیدروژنى و سلاح هاى هسته اى _ حرارتى (Thermonuclear) شناخته مى شوند.

راکتورهاى هسته اى

راکتورها داراى کاربردهاى کاملاً دوگانه هستند. در مصارف صلح آمیز با بهره گیرى از حرارت تولیدى در شکافت هسته اى کار مى کنند. این حرارت جهت گرم کردن آب، تبدیل آن به بخار و استفاده از بخار براى حرکت توربین ها بهره گرفته مى شود. همچنین اگر قصد ساخت بمب هاى پلوتونیومى در کار باشد نیز اورانیوم غنى شده را به راکتورهاى هسته اى منتقل مى کنند.در نوع خاصى از راکتورهاى هسته اى از اورانیوم غنى شده به شکل قرص هایى به اندازه یک سکه و ارتفاع یک اینچ بهره مى گیرند. این قرص ها به صورت کپسول هاى میله اى شکل صورت بندى شده و درون یک محفظه عایق، تحت فشار قرار داده مى شوند.

در بسیارى از نیروگاه هاى هسته اى این میله ها جهت خنک شدن درون آب غوطه ور هستند. روش هاى دیگر خنک کننده نیز نظیر استفاده از دى اکسیدکربن یا فلز مایع هستند. براى کارکرد مناسب یک راکتور _ مثلاً تولید حرارت با کمک واکنش شکافت _ هسته اورانیومى باید داراى جرم فوق بحرانى باشد، این بدین معناست که مقدار کافى و مناسبى از اورانیوم غنى شده جهت شکل گیرى یک واکنش زنجیرى خود به خود پیش رونده موردنیاز است.براى تنظیم و کنترل فرآیند شکافت میله هاى کنترل کننده از جنس موادى نظیر گرافیت با قابلیت جذب نوترون هاى درون راکتور وارد محفظه مى شوند. این میله ها با جذب نوترون ها باعث کاهش شدت فرآیند شکافت مى شوند.

در حال حاضر بیش از چهارصد نیروگاه هسته اى در جهان وجود دارند و 17 درصد الکتریسیته جهان را تولید مى کنند. راکتورها همچنین در کشتى ها و زیردریایى ها کاربرد دارند.

بازپردازش

بازپردازش یک عملیات شیمیایى است که سوخت کارکردى را از زباله هاى اتمى جدا مى کند.در این عملیات میله سوخت مصرف شده، غلاف بیرونى فلزى خود را در قبال حل شدن در اسیدنیتریک داغ از دست مى دهد.محصولات این عملیات که در راکتور مورد استفاده دوباره قرار مى گیرد، شامل 96 درصد اورانیوم، سه درصد زباله اتمى به شدت پرتوزا و یک درصد پلوتونیوم است.همه راکتورهاى هسته اى پلوتونیوم تولید مى کنند اما انواع نظامى آنها به صورت کاملاً بهینه ترى نسبت به سایر انواع راکتور این کار را انجام مى دهند. یک واحد بازپردازش و یک راکتور جهت تولید مقدار کافى پلوتونیوم مى توانند به صورت نامحسوسى در یک ساختمان عادى جاسازى شوند.این مسئله باعث مى شود استخراج پلوتونیوم با کمک بازپردازش به گزینه اى جذاب براى هر کشورى که به دنبال برنامه هاى غیرقانونى سلاح هاى اتمى است، تبدیل شود.

بمب پلوتونیوم

پلوتونیوم مزیت هاى متعددى نسبت به اورانیوم به عنوان جزیى از سلاح هاى اتمى دارد. تنها حدود چهار کیلوگرم پلوتونیوم براى ساخت یک بمب موردنیاز است، همچنین براى تولید 12 کیلوگرم پلوتونیوم در هر سال تنها به یک واحد کوچک بازپردازش نیاز است. یک کلاهک هسته اى شامل یک کره پلوتونیوم، احاطه شده توسط پوسته اى از فلز، مثلاً بریلیوم، است که نوترون ها را به فرآیند شکاف بازمى گرداند. این مسئله باعث مى شود مقدار کمترى پلوتونیوم براى رسیدن به جرم بحرانى و ایجاد یک واکنش شکافت زنجیره اى مورد نیاز باشد. به هرحال یک گروه تروریستى براى دسترسى به پلوتونیوم از راکتورهاى هسته اى غیرنظامى داراى مشکلات کمترى نسبت به دسترسى به اورانیوم غنى شده جهت ایجاد یک انفجار هسته اى هستند.کارشناسان معتقدند که بمب هاى عمل آورى شده پلوتونیوم مى تواند با تخصصى کمتر از آنچه که توسط فرقه «آئوم» در حمله با گاز اعصاب به مترو توکیو(1995) به کار گرفته شد، طراحى و جمع آورى شود.

یک انفجار هسته اى از این نوع مى تواند با نیروى معادل یکصد تنى TNT منفجر شود؛ بیست بار قوى تر از بزرگ ترین حمله تروریستى تاریخ!


کلمات کلیدی: هسته ای


نوشته شده توسط مهدی 86/2/23:: 8:6 عصر     |     () نظر
<   <<   6   7   8   9   10   >>   >